Sri Subramanyam Balasadi vs. The State Of A.P.

Court:High Court of Andhra Pradesh
Judge:Hon'ble Duppala Venkata Ramana
Case Status:Dismissed
Order Date:3 Aug 2023
CNR:APHC010672202016

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission

Before:

Hon'ble B.Siva Sankara Rao

Listed On:

4 Dec 2018

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI THURSDAY, THE THIRD DAY OF AUGUST TWO THOUSAND AND TWENTY THREE :PRESENT: THE HONOURABLE SRI JUSTICE DUPPALA VENKATA RAMANA

CRIMINAL PETITION NO: 16810 OF 2016

Between:

    1. Sri Subramanyam Balasadi, S/o. Narasimham, aged about 44 years, Chief Operation Officer, Neelsys India Private Ltd., BHEL MIG Colony, Hyderabad 32
    1. Srinivasa Rao Tata, S/o. Narasimha Rao, aged about 40 years Manager of Neelsys India Private Ltd BHEL MIG Colony, Hyderabad 32

AND

Petitioners/Accused No. 1 & 2

$\begin{bmatrix} 3370 \end{bmatrix}$

    1. The State of Andhra Pradesh., Through SHO, Muvvalavani Palem Police Station Visakhapatnam City Rep. By its Public Prosecutor High Court at Hyderabad for the State of Telangana and the State of Andhra Pradesh, Hyderabad.
    1. Sri Boddepalli Seshagiri Rao, S/o. Sri Ramulu (late), aged 35 years Divya Sri Apartment, Gopalappatnam Visakhapatnam City

Respondent/Complainant

Petition under Section 482 of Cr.P.C, praying that in the circumstances stated in the memorandum of grounds filed in support of the Criminal Petition, the High Court may be pleased to QUASH the proceedings in Crime No. 202/2016 on the file of SHO, Muvvalavani Palem Police Station, Visakhapatnama City

IA NO: 2 OF 2016 (CRLMP.NO.18966 of 2016)

Petition under Section 482 of Cr.P.C, praying that in the circumstances stated in the memorandum of grounds filed in support of the petition, the High Court may be pleased to stay all further proceedings in Crime No. 202/2016 on the file of the SHO., Muvvalavani Palem Police Station, Visakhapatnam City, Pending disposal of CRLP 16810 of 2016, on the file of the High Court.

and a fisher that.

to ineue of a

The petition coming on for hearing, upon perusing the Petition and the memorandum of grounds filed in support thereof and upon hearing the arguments of Assistant Public Prosecutor for the Respondent No.1 and the Court made the following ORDER $\mathcal{L} = \mathcal{L} \mathcal{L}$

"None appeared on behalf of petitioners." Cord Str. 64

Learned Assistant Public Prosecutor is present. the thing of the property of

$\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$ HTRUE COPYII

THE REAL PROPERTY.

AND STATES

$\mathcal{L}^{\mathcal{L}}$ $\cdots \quad (60)$ : A Set 线 2 get

The concerned Station House Officer is directed to proceed with the investigation in accordance with Law.

the distance that the call Post the matter on 30.08.2023. U.S. Estamani.<br>J. J. Folkrittin

Sd/- T. MADHAVI ASSISTANT REGISTRAR

SECTION OFFICER FOR ASSISTANT REGIST.

To,

    1. The Station House Officer, Muvvalavani Palem Police Station Visakhapatnam City
    1. Sri Boddepalli Seshagiri Rao, S/o. Sri Ramulu (late), aged 35 years Divya Sri Apartment, Gopalappatnam Visakhapatnam City (by RPAD)
    1. One CC to Sri R Siva Sai Swarup Advocate [OPUC]

A dia ana de Made De Partie

  1. Two CCs to Public Prosecutor, High Court of AP [OUT]

a And Express $\frac{1}{\left\langle \mathcal{H}^{\frac{1}{2}}(1,\frac{1}{2})\right\rangle _{\mathcal{H}^{\frac{1}{2}}(1,\frac{1}{2})}=\frac{1}{\left\langle \mathcal{H}^{\frac{1}{2}}(1,\frac{1}{2})\right\rangle _{\mathcal{H}^{\frac{1}{2}}(1,\frac{1}{2})}=\frac{1}{\left\langle \mathcal{H}^{\frac{1}{2}}(1,\frac{1}{2})\right\rangle _{\mathcal{H}^{\frac{1}{2}}(1,\frac{1}{2})}=\frac{1}{\left\langle \mathcal{H}^{\frac{1}{2}}(1,\frac{1}{2})\right\rangle _$

中國的聯盟產品 Suggest that the problem of the problem.

$\tau_{\bullet} \cdot \epsilon$ $\left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A} \right\rangle = \left\langle \mathcal{A}$ $\mathbb{E}[\int_{\mathbb{R}^n} f]$ $\mathbb{R}^{m} \times \mathbb{R}^{m}$ $\mathcal{L}(\mathcal{M},\mathcal{D},\mathcal{M})$ 医福斯蒂 电磁力

the properties and

$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

anda<br>Managartas (1<br>1990) (Sanagar $\begin{array}{c} \mathcal{H}(\mathcal{H}) = \mathcal{H}(\mathcal{H}) \ \mathcal{H}(\mathcal{H}) = \mathcal{H}(\mathcal{H}) \end{array}$

$\mathcal{L}_{\text{max}}(x) = \frac{1}{\sqrt{2}} \left( \frac{1}{\sqrt{2}} \left( \frac{1}{\sqrt{2}} \right) \frac{1}{\sqrt{2}} \left( \frac{1}{\sqrt{2}} \right) \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} \right$ and the company

$\mathcal{L} = \mathcal{L}(\mathcal{L})^T$

$\mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} \mathcal{L}_{\text{max}}$

changes.

$\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^2} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1$

$\int_{\mathbb{R}^d} \mathcal{F}(\frac{d\mathcal{F}}{d\mathcal{F}}) , \mathcal{F}(\frac{d\mathcal{F}}{d\mathcal{F}}) , \mathcal{F}(\frac{d\mathcal{F}}{d\mathcal{F}}) , \mathcal{F}(\frac{d\mathcal{F}}{d\mathcal{F}}) , \mathcal{F}(\frac{d\mathcal{F}}{d\mathcal{F}}) , \mathcal{F}(\frac{d\mathcal{F}}{d\mathcal{F}}) , \mathcal{F}(\frac{d\mathcal{F}}{d\mathcal{F}}) , \mathcal{F}(\frac{d\mathcal{F}}{d$ $\mathcal{H}^{(k)}_i \subset \mathcal{H}^{(k)}i$ $\gamma{\rm{eff}}\sim$

$\bigg(\int_{\mathbb{R}^d} \frac{d\mathbf{r}}{r} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial$

$\mathcal{L}^{\mathcal{L}}$ $\mathcal{L} = \mathcal{L} \mathcal{L}$

a<br>Santa da Santa

$\frac{1}{\sqrt{2\pi}}\left[\frac{\mathcal{B}(\tau)}{\tau}\left(\mathbf{x}^{\frac{1}{2}}\right)^2\right]^{-1}\left[\frac{1}{\sqrt{2\pi}}\mathbf{x}^{\frac{1}{2}}\right]^{-1}\left[\frac{1}{\sqrt{2\pi}}\mathbf{x}^{\frac{1}{2}}\right]^{-1}\left[\frac{1}{\sqrt{2\pi}}\right]$ $\mathcal{L}{\mathcal{A}}(x) = \mathcal{L}{\mathcal{A}}(x)$ 电基件磁盘 $\left\langle \mathcal{A}^{\dagger}{\mathcal{A}}\right\rangle =\left\langle \mathcal{A}^{\dagger}{\mathcal{A}}\right\rangle$

Privat Jana $\mathbb{R}^2$

10年1月1日<br>1980年 - 1990年 - 1990年 일 :<br>원년 : 일 : 1999년

$\mathbb{E}[\mathbb{E}_{\mathcal{S}^1}[\mathbf{1}])$

$\varphi^{(i)}\hat{e}^{(i)}_j=\varphi^{(i)}\hat{e}^{(i)}_j$

$-3.5$ The probability of the $\mathcal{L}(\mathcal{L}) = \mathcal{L}(\mathcal{L}) \mathcal{L}(\mathcal{L})$

  1. One spare copy

RVK

$\frac{1}{2\sqrt{2}}\sqrt{2} \sim \sqrt{2}$

HIGH COURT

DVRJ

DATED:03/08/2O23

POST THE MATTER ON 30.08.2023

ORDER

CRLP.No.1681'O of 2016

DIRECTION

Share This Order

Case History of Orders

Order(4) - 20 Sept 2023

Final Order

Click to view

Order(3) - 19 Sept 2023

Final Order

Click to view

Order(1) - 3 Aug 2023

Interim Order

Click to view

Order(2) - 3 Aug 2023

Interim Order

Viewing