Shaik Ranthu Bee vs. The Stae Of Ap

Court:High Court of Andhra Pradesh
Judge:Hon'ble Ninala Jayasurya
Case Status:Disposed
Order Date:16 Nov 2022
CNR:APHC010623622022

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission (Revenue)

Before:

Hon'ble Ninala Jayasurya

Listed On:

16 Nov 2022

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI (SPECIAL ORIGINAL JURISDICTION)

$\mathcal{P}_{\text{other}} = \frac{1}{\sqrt{2}}$ $\mathbb{N} \times \mathbb{N}$ $\mathbb{E}[\mathbb{E}[\mathbb{E}[\mathbb{E}(\mathcal{L}])] = \mathbb{E}[\mathbb{E}[\mathbb{E}[\mathcal{L}]]]$

WEDNESDAY, THE SIXTEENTH DAY OF NOVEMBER TWO THOUSAND AND TWENTY TWO

:PRESENT: $\mathbb{R}^n \times \mathbb{R}^n$

THE HONOURABLE SRI JUSTICE NINALA JAYASURYA WRIT PETITION NO: 37249 OF 2022

Between:

Shaik Ranthu Bee, W/o Pedda Kalesha, Aged. 61 Years, Occ. Cultivation, R/o. Krishnapuram Village Post, B.C. Colony, H/o. Budawada Village, Brahmana Palli, Marripadu Mandal, S.P.S.R. Nellore District. Petitioner

AND

$\mathbf{I}$

    1. The State Of Andhra Pradesh, Rep. by its Principal Secretary to Government, Revenue Department, Secretariat, Velagapudi, Amaravati, Guntur District.
    1. The District Collector, S.P.S.R. Nellore District at Nellore.
    1. The Revenue Divisional Officer, Atmakur (Kavali) Revenue Division, Atmakur, S.P.S.R. Nellore District.
    1. The Tahsildar, Marripadu Mandal, S.P.S.R. Nellore District.
    1. The Mandal Surveyor, Marripadu Mandal, S.P.S.R. Nellore District.
    1. The Revenue Inspector, Marripadu Mandal, S.P.S.R.Nellore District.
    1. The Village Revenue Officer, Budawada Village, Marripadu Mandal, S.P.S.R.Nellore District.
    1. The Station House Officer, Marripadu Police Station, Marripadu Mandal, S.P.S.R.Nellore District. $\mathbb{E}[\mathbb{E}[\mathbb{E}])$

Respondents

[3209]

$\Lambda$

जायर

Petition under Article 226 of the Constitution of India praying that in the circumstances stated in the affidavit filed therewith, the High Court may be pleased to issue a writ, order or direction more particularly one in the nature of WRIT OF MANDAMUS declaring the action of the respondents in trying to demarcate of my landed schedule properties and insisting me to vacate from my landed properties in an extent of Ac.2.50 Cents in Sy. No. 234/3 of which is bounded by schedule East. Land of Sahik Hussainaiah (Sy.No.234/3), West. Half land to North belongs to Ganugapenta Narayanamma (originally), presently Beri Venkatalakshmamma and Sreenivasa Reddy's land (Sy.No.231/1) and West to South Shaik Rasheeda (originally) presently Puchakatla Kalyani, North. National Highway Road (Badwale to Kavali), South-Land in Sy.No.235 belongs to Shaik Khaja Be and Shaik Abdullah of Budawada Revenue Village, Marripadu Mandal of S.P.S.R. Nellore District, without following any known procedure established by law, as illegal, irregular, irrational, without jurisdiction and violative of Articles 14, 21 and 300-A of Constitution of India and consequently direct the respondents not to demarcate my landed properties and not to dispossess and interfere in any manner with my peaceful possession and enjoyment over my said landed schedule properties.

$\mathcal{L} = \mathcal{L}$ ${ \mathcal{V}_i, \mathcal{V}_i }$

IA NO: 1 OF 2022

Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to direct the respondents not to demarcate, interfere and not to dispossess with my peaceful possession and enjoyment over my landed schedule properties in an extent of Ac.2.50 Cents in Sy. No. 234/3 of which is bounded by East. Land of Sahik Hussainaiah (Sy.No.234/3), West. Half land to North belongs to Ganugapenta Narayanamma (originally), presently Berto Venkatalakshmamma and Sreenivasa Reddy's land (Sy.No.231/1) and West to South Shaik Rasheeda (originally) presently Puchakatla Kalyani, North. National Highway Road (Badwale to Kavali), South-Land in Sy.No.235 belongs to Shaik Khaja Be and Shaik Abdullah of Budawada Revenue Village, Marripadu Mandal of S.P.S.R. Nellore District, Pending disposal of WP 37249 of 2022, on the file of the High Court.

$\mathcal{O}(\log_2(1-\delta_{\max}^2))$ $\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}\sum_{i=1}^{\infty}\frac{1}{\sqrt{2}}$ ${f\in \mathcal{F}^{\mathcal{A}}{\mathcal{A}}} \subseteq \mathcal{F}$ $\mathcal{O}(\mathcal{A}(\mathcal{A}(\mathcal{A}(\mathcal{A})))$ $\mathcal{L}^{(1)}\left(\mathcal{L}^{(1)}\left(\mathcal{L}^{(2)}\right)\right)\rightarrow\mathcal{L}^{(2)}\left(\mathcal{L}^{(2)}\right)\rightarrow\mathcal{L}^{(2)}\left(\mathcal{L}^{(2)}\right)\rightarrow\mathcal{L}^{(2)}\left(\mathcal{L}^{(2)}\right)\rightarrow\mathcal{L}^{(2)}\left(\mathcal{L}^{(2)}\right)\rightarrow\mathcal{L}^{(2)}\left(\mathcal{L}^{(2)}\right)\rightarrow\mathcal{L}^{(2)}\left(\mathcal{L}^{(2)}\right)\rightarrow\mathcal{L}^{(2)}\left(\mathcal{L}^{(2)}\right$ $\mathcal{E}{\mathcal{M}{\mathcal{A}}} = \exp(\mathcal{E}{\mathcal{A}}) \frac{1}{2} \mathcal{E}$ $\mathcal{L}^{(1)}$

The petition coming on for hearing, upon perusing the Petition and the affidavit filed in support thereof and upon hearing the arguments of SRI DHANUNJAYA BARU ~ Advocate for the Petitioner, ASSISTANT GP FOR REVENUE for the Respondent Nos. 1 to 7, GP FOR HOME for the Respondent No.8 and the Court made the following

$\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\left(\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\right)\left(\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\right)\left(\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\right)\left(\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\right)\left(\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\right)\left(\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\right)\left(\mathcal{H}^{\mathcal{A}}{\mathcal{A}}\right)\left(\mathcal{H}^{\mathcal{A}}_{\mathcal{A}}\right)\left(\mathcal{H}$

민준이 돈

ORDER

"Heard learned counsel for the petitioner and the learned Assistant Government Pleader for Revenue, who seeks time to secure instructions in the matter.

Considering the submissions made and perusing the Order dated 26.07.2021 in W.P.No.14444 of 2021, there shall be interim direction to the respondents not to take any coercive action or dispossess the petitioner from the subject matter property, for a period of two (2) weeks.

List this case on 28.11.2022 in the Motion List." $\sim$

Sd/- S.SRINIVASA PRASAD ASSISTANT REGISTRAR

//TRUE COPY//

$\mathcal{B}$

For ASSISTANT REGISTRAR

To,

$\ddot{ }$

  1. The Principal Secretary to Government, Revenue Department, State Of Andhra Pradesh, Secretariat, Velagapudi, Amaravati, Guntur District,

F

    1. The District Collector, S.P.S.R. Nellore District at Nellore.
    1. The Revenue Divisional Officer, Atmakur (Kavali) Revenue Division, Atmakur, S.P.S.R. Nellore District.
    1. The Tahsildar, Marripadu Mandal, S.P.S.R. Nellore District.
    1. The Mandal Surveyor, Marripadu Mandal, S.P.S.R. Nellore District.
    1. The Revenue Inspector, Marripadu Mandal, S.P.S.R.Nellore District.
    1. The Village Revenue Officer, Budawada Village, Marripadu Mandal, S.P.S.R.Nellore District.
    1. The Station House Officer, Marripadu Police Station, Marripadu Mandal; S.P.S.R.Nellore District.( 1 to 8 by RPAD)
  • Ø. One CC to SRI. DHANUNJAYA BARU Advocate [OPUC]

    1. Two CCs to GP FOR REVENUE, High Court Of Andhra Pradesh. [OUT]

$\frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{\sqrt{2}}\frac$

$\mathcal{R}{\mathcal{F}} = \mathbb{E}{\mathcal{F}}$ $\epsilon_{\rm{in}}$

$\bigoplus_{i=1}^n \mathbb{E} \bigoplus_{i=1}^n \mathbb{E}$ $\mathcal{L}^{\text{max}}_{\text{max}}\left(\mathcal{A}\right)$ $\left\lceil \frac{1}{2} \right\rceil \geq \left\lceil \frac{1}{2} \right\rceil$ 经延期税 $\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$

$\varphi\in\mathcal{F}$

$\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{$

Q. $\hat{\mathcal{A}}_i$

$\mathcal{L}^{\mathcal{L}}$

$\pi_{\mathcal{F}}(x_1)$ $\mathcal{L} = \left{ \begin{array}{ll} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{array} \right. \in \mathcal{L}^{\infty}$ $\mathbb{E}[\mathcal{E}{\mathcal{A}}\mathcal{A}^{\mathcal{A}}]{\mathcal{A}}$ $\omega^2\geq \gamma_2\omega^2+\varepsilon$ $\epsilon(\tau) \propto \sqrt{\tau}$

$\mathcal{O}(\mathcal{A}) \to \mathcal{A}$ $|x|_{\mathbb{R}^2}$

$\left{ \left( \mathcal{A}^{(n)} \right) \right}_{n \in \mathbb{N}}$

ŵ $\phi \in \mathcal{F}_0$

$\mathcal{M}_{\mathcal{A}}$ $\mathcal{L}(\mathcal{L})$ $\pi^{\alpha\beta\gamma\gamma}$

$\tau_{\rm{max}}^{(N)}$

$\mathcal{L}_{\mathcal{L}}$

$\cdot,$

    1. Two CCs to GP FOR HOME, High Court Of Andhra Pradesh. [OUT]
    1. One spare copy

RVK

$\mathbf{J}$

HIGH COURT

NJSJ

$\hat{t}$

$\tilde{\mathbf{r}}$

$\overline{a}$

$\overline{1}$

$\overline{a}$

DATED:16/11/2022

NOTE: LIST THIS CASE ON 28.11.2022 IN THE MOTION LIST

$\mathcal{L}_{\mathcal{L}}$

$\mathcal{M}^{\mathcal{A}}{\mathcal{A}}(x)$ $\mathbf{L}{\mathcal{C}} = \mathbf{L}_{\mathcal{D},\mathbf{L}}$

$\mathbb{E}[\mathcal{M}^{\mathcal{M}}_{\mathcal{M}}]$

$\mathcal{M}_{\mathcal{C}}(x)$

$\left{ \begin{array}{c} \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r} \ \mathbf{r}$

$\begin{array}{c} \text{SUSY} \ \text{H} \ \text{H} \end{array}$

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o

$\mathcal{L}=\mathcal{L}$ $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})$ $\mathcal{M}^{\mathcal{M}}{\mathcal{M}}$ $(\sigma, \mathcal{M}k, t)$ $\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\subseteq \mathcal{L}^{\mathcal{L}}{\mathcal{L}}$

$\mathcal{L}^{\mathcal{L}}$ $\mathcal{L} \left( \mathcal{L} \right) = \frac{1}{\sqrt{2}} \mathcal{L} \left( \mathcal{L} \right) = \frac{1}{\sqrt{2}} \mathcal{L} \left( \mathcal{L} \right) = \frac{1}{\sqrt{2}} \mathcal{L} \left( \mathcal{L} \right)$

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array$

$\mathcal{M}^{\mathcal{A}} = \mathcal{M}^{\mathcal{A}} \mathcal{M}^{\mathcal{A}}$ $\mathcal{C}(\mathbb{R},\mathbb{R}))$ $\mathcal{L}^{\mathcal{B}}{\mathcal{A}}\otimes \mathcal{L}^{\mathcal{B}}{\mathcal{A}}$

$\sup_{\mathcal{X}}\sup_{\mathcal{X}}\mathcal{X}\sup_{\mathcal{X}}\mathcal{X}$

の 年

$\mathbb{R}^{\frac{1}{2}}$ $\frac{1}{\sqrt{2}}\frac{\partial}{\partial \mu} \frac{\partial}{\partial \nu}$ $\mathcal{N}_{\mathcal{L}}$ $\mathcal{L}^{\text{max}}(\mathcal{L})$

$\mathcal{A}^{\mathcal{A}}$

ORDER

WP.No.37249 of 2022

DIRECTION

$\overline{1}$ $\overline{\Sigma}$

$\alpha$

Share This Order

Case History of Orders

Order(5) - 5 Dec 2022

Final Order

Click to view

Order(3) - 28 Nov 2022

Interim Order

Click to view

Order(4) - 28 Nov 2022

Interim Order

Click to view

Order(1) - 16 Nov 2022

Interim Order

Click to view

Order(2) - 16 Nov 2022

Interim Order

Viewing