T.Venkateswarlu vs. Shamsher Singh Rawat
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
For Admission
Before:
Hon'ble D Ramesh
Listed On:
21 Oct 2022
Original Order Copy
Get a certified copy of this order
Order Text
(SHOW CAUSE NOTICE BEFORE ADMISSION) IN THE HIGH COURT OF ANDHRA PRADESH :: AMARAVATI (Original Jurisdiction) FRIDAY, THE TWENTY FIRST DAY OF OCTOBER TWO THOUSAND AND TWENTY TWO : PRESENT: THE HONOURABLE SRI JUSTICE D RAMESH CONTEMPT CASE NO: 4342 OF 2022
Between:
T. Venkateswarlu, S/o Lakshmaiah, Aged about 65 years, Occupation: Business, R/o H No. 1129/6A, Barampet, Narasaraopet, Guntur District.
Petitioner
AND
-
- Sri Shamsher Singh Rawat, I.A.S, Principal Secretary, Government of Andhra Pradesh, Finance Department, A P Secretariat, Velagapudi, Amaravati, A P
-
- Smt.Y Sri Lakshmi, IAS, Principal Secretary, Municipal Administration and Urban Development, Secretariat, Velagapudi, Amaravathi
-
- Sri. Vivek Yadav, I.A.S, Commissioner, Amaravathi Metropolitian Region Development Authority, (formerly known as AP Capital Region Development Authority)
-
- Sri V. Srinivas, Director of Works Accounts (Pay and Accounts), Vijayawada Respondents
WHEREAS the petitioners have presented under Sections 10 to 12 of the Contempt of Courts Act, 1971, the above case through his counsel SRI SATYANARAYANA NIMMALA, praying the High Court to punish the respondents for their willful, blatant and utter violation of the order dated 21-06-2022 passed by this Court in WP.No.26647 of 2021, in the interest of justice;
WHEREAS the said case coming on for orders as to admission on this day and whereas the High Court, upon perusing the affidavit filed therein, and upon hearing the arguments of SRI SATYANARAYANA NIMMALA Advocate for the petitioner, directed issuance of notice before admission to the respondents herein, to show cause as to why in the circumstances stated in the affidavit filed in support thereof, the said case should not be admitted.
Therefore, you namely;
-
- Sri Shamsher Singh Rawat, I.A.S, Principal Secretary, Government of Andhra Pradesh, Finance Department, A P Secretariat, Velagapudi, Amaravati, A P
-
- Smt.Y Sri Lakshmi, IAS, Principal Secretary, Municipal Administration and Urban Development, Secretariat, Velagapudi, Amaravathi
-
- Sri. Vivek Yadav, I.A.S, Commissioner, Amaravathi Metropolitian Region Development Authority, (formerly known as AP Capital Region Development $Authority)$
-
- Sri V. Srinivas, Director of Works Accounts (Pay and Accounts), Vijayawada
be and hereby are directed to show cause, as to why the contempt case should not be admitted, either appearing in person or through Advocate, duly instructed on
18-11-2022, to which date the case stands posted for hearing, failing wherein the said case will be heard and determined ex-parte
$\mathcal{L} = \mathcal{E}^{\mathcal{L} \times \mathcal{L}}$
//TRUE COPY//
SD/-V.DIWAKAR DEPUTY REGISTRAR SECTION OFFICER
To,
$\frac{1}{\sqrt{2\pi}}\frac{\partial}{\partial x} = \frac{1}{\sqrt{2\pi}}\frac{\partial}{\partial x}$
$\mathrm{curl}^{\mathcal{A}}\mathcal{A}_{\mathcal{A}}=\mathcal{I}$
$\hat{\phi}_{\rm{max}}(k)$
$\frac{1}{\max} \frac{\log \log \log n}{\log n}$
- The District Judge, Guntur, Guntur District (By RPAD - in duplicate with a copy of petition and affidavit to serve on the Respondents 1 to 3 and to return to this Court before 18-11-2022)
-
- The Metropolitan Sessions Judge, Vijayawada, Krishna District (By RPAD in duplicate with a copy of petition and affidavit to serve on the Respondent No.4 and to return to this Court before 18-11-2022)
-
- Sri Shamsher Singh Rawat, I.A.S, Principal Secretary, Government of Andhra Pradesh, Finance Department, A P Secretariat, Velagapudi, Amaravati, A P
-
- Smt.Y Sri Lakshmi, IAS, Principal Secretary, Municipal Administration and Urban Development, Secretariat, Velagapudi, Amaravathi
-
- Sri. Vivek Yadav, I.A.S, Commissioner, Amaravathi Metropolitian Region Development Authority, (formerly known as AP Capital Region Development Authority)
-
- Sri V. Srinivas, Director of Works Accounts (Pay and Accounts), Vijayawada (Addresses 3 to 6 by RPAD along with petition and affidavit)
$\in \mathcal{A}_\mathbb{R}$
- One spare copy
أأولت والوروسية والمرادي والمتابع والمرادية والمتعارفة والمتعادة والمتعارفة والمتعارفة والمتعارفة والمتعارفة
$\mathcal{L}^{\text{max}}{\text{max}}(x) = \mathcal{L}^{\text{max}}{\text{max}}(x)$
ing ngangang menggunakan di Pangangan.<br>Pengangan panggunakan di Pengangan $\mathcal{L}^{\text{max}}{\text{max}}\left(\mathcal{L}^{\text{max}}{\text{max}}\right)$ والمرائمهم وأوليا الممتويات والمقصقة موسقة But it is a family of the $\lambda_{\rm S}^{\rm S}(\Omega,\omega_{\rm S}^{\rm S})\sim 10^{-3}$ $\mathcal{A} = \mathcal{A} \mathcal{A}$ $\mathcal{L} = \mathcal{L} \times \mathcal{L}$ $\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \end{aligned} \quad \begin{aligned} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \end{aligned}$ $\mathcal{L} = \left{ \begin{array}{ll} \mathcal{L} & \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} & \mathcal{L} \end{array} \right} \quad \mathcal{L} = \left{ \begin{array}{ll} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{array} \right} \quad \mathcal{L} = \left{ \begin{array}{ll} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{array} \right} \quad \mathcal{L} = \left{ \begin{array}{ll} \mathcal{L} & \mathcal{L} \ \mathcal{L}$ $\mathcal{L}{\mathcal{A}}(\mathcal{A})$ $\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}}(\mathbf{r}) = \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max}}(\mathbf{r}) + \mathcal{L}{\text{max$ $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2}}$ $\mathcal{A} = \mathcal{A} \cup \mathcal{A}$ $\label{eq:1} \mathcal{L} = \begin{pmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{pmatrix} \quad \text{and} \quad \mathcal{L} = \begin{pmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{pmatrix} \quad \text{and} \quad \mathcal{L} = \begin{pmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{pmatrix} \quad \text{and} \quad \mathcal{L} = \begin{pmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{pmatrix} \quad$ $\mathcal{L} = { \mathcal{L} \in \mathcal{L} : \mathcal{L} \in \mathcal{L} }$ $\epsilon{\mu\nu} = \epsilon_{\mu\nu}$ $\label{eq:1} \mathcal{L}{\text{max}} = \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{1}{\sqrt{2}} \mathcal{L}{\text{max}} + \frac{$
and the East of
المعالمين المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم ا<br>المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم المستقدم ال
$\mathcal{S}(\mathcal{A}\mathcal{A})$ $\mathcal{D}{\infty}(\mathcal{A}{\infty})\subseteq \mathcal{D}{\infty}(\mathcal{A}{\infty})$ $\mathcal{O}(\mathcal{A}(\mathcal{O}))$ $\begin{array}{c} \mathcal{H} \longrightarrow \mathcal{H} \ \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{H} \ \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{H} \end{array}$ $\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L}$ المراجعة والمعارفة المقادر $\mathcal{L}{\text{max}}(x)$
$\ddot{\phantom{0}}$
HIGH COURT
$\mathcal{S} = \mathcal{S} = \mathcal{S}$
DRJ
DATED:21/10/2022
$\mathbb{F}\in\mathbb{R}^m$
POST ON 18-11-2022
$\lambda^{(1-\beta)\alpha+1}=\cdots=\lambda^{(1-\beta)\alpha+1}$
ORDER
CC.No.4342 of 2022
NOTICE BEFORE ADMISSION