Kuchipudi Srinivasa Rao vs. The State Of Andhra Pradesh

Court:High Court of Andhra Pradesh
Judge:Hon'ble M.Ganga Rao
Case Status:Unknown Status
Order Date:17 Oct 2022
CNR:APHC010457642022

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission (Mines And Industries)

Before:

Hon'ble R Raghunandan Rao

Listed On:

28 Sept 2022

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

(FRESH SHOW CAUSE NOTICE BEFORE ADMISSION) IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI (SPECIAL ORIGINAL JURISDICTION)

MONDAY, THE SEVENTEENTH DAY OF OCTOBER. TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRIJUSTICE A.V.SESHA SAI ÀND THE HONOURABLE SRI JUSTICE V SRINIVAS

WRIT PETITION No. 27894 of 2022

Between:

    1. Kuchipudi Srinivasa Rao, S/o: Satyanarayana, Aged about 56 years. Occ : Director, APHMEL R/o Plot No.302, Kollati Towers, Ratnamamba Street, SBH Bank, Prajasakthi Nagar, Moghairajpuram, Vijayawada, Krishna District, Andhra Pradesh $\mathbf{A}^{\mathbf{A}} =$
    1. PSR Koteswara Rao, S/o. P. Venkateswara Rao, Aged about 70 years, Occ: Director, APHMEL, R/o 6-88/87, Flat No-B190, F'akruti Nivas, Opposite IAF Academy, Annaram, Medak, Telangana-502313.
    1. Juvva Seshagiri Rao, S/o. Koteswara Rao Aged about 77 years, Occ : Director, APHMEL R/o 3-3/1, Kavuluru, Krishna District, Andhra Pradesh.

$\label{eq:1} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \mathcal{L}_{\text{max}}(x) \math$

$\mathsf{AND}$ 1. The State of Andhra Pradesh, Rep by its Principal Secretary, Department of Industries and Commerce, Secretariat, Velagapudi, Amaravati, Guntur District, Andhra Pradesh.

$\mathcal{C}^{\infty}(\mathfrak{g},\mathfrak{g})\stackrel{\mathcal{B}}{\longrightarrow}\mathcal{C}^{\infty}(\mathfrak{g},\mathfrak{g})$

    1. Andhra Pradesh Heavy Machinery and Engineering Ltd. (APHMEL). Kondapalli, Krishna District, Andhra Pradesh-521228. Rep by its Managing Director $\mathcal{L}_{\mathcal{A}}$
    1. The Singareni Collieries Company Limited, Kothagudem Collieries, Khammam District, Telangana-507101.

$\mathbb{C}d\mathbb{N}$

    1. Andhra Pradesh Industrial Development Corporation (APIDC), Parishrama
    • Bhawan, 1<sup>st</sup> Floor, 5-9-58/B, Fateh Maidan Road, Basheerbagh, Hyderabad,

Telangana – 500029.

....Respondents

Petitioners

WHEREAS the Petitioners above named through their Advocate SRI N. ASHWANI KUMAR, presented this Petition under Article 226 of the Constitution of India praying that in the circumstances stated in the affidavit filed therewith, the High Court may be pleased to issue a Writ of Mandamus or any other appropriate writ, order or direction, to declare the action of the Respondents, more particularly, Respondent No.2 in carrying out amendment to Article 101(3) of the Articles of Association of the Respondent No.2 Company which reduces the number of Directors representing other than SCCL (Respondent No.3) and APIDC (Respondent No.4) from Three (3) to One (1) even before bifurcation of the Respondent No.2 Company which is a Schedule IX Institution under the Andhra Pradesh Reorganisation Act, 2014, vide the EGM scheduled on 05.09.2022 as being illegal, arbitrary and in violation of the Sections 53 and 68 of the AP Reorganisation Act, 2014 and in violation of Expert Committee Report headed by Dr.Sheela Bhide

$\mathcal{A} \subseteq \mathbb{C}$ $\mathcal{A} \times \mathcal{A}$

$\cos(\beta \tau)$

IAS (Retd) dated 15.03.2018 and Consequently set aside the proposal to amend the Article 101(3) of the Articles of Association of the Respondent No.2 Company to reduce the number of Directors representing other than SCCL (Respondent No.3) and APIDC (Respondent No.4) from Three (3) to ,One (1).

${ \beta_i}_{i=1}^N$ AND WHEREAS the High Court upon perusing the petition and affidavit filed

herein and the earlier Order of the High Court dated 01.09.2022 made herein and upon hearing the arguments of Sri N. Ashwani Kumar, Advocate for the Petitioners and of the Govt. Pleader for industries for respondent No.1, directed issue of notice to the Respondents herein returnable in two weeks show cause as to why this WRIT PETITION should not be admitted.

You viz:

    1. The Singareni Collieries Company Limited, Kothagudem Collieries, Khammam District, Telangana-507101,
  • Andhra Pradesh Industrial Development Corporation (APIDC), Parishrama Bhawan, 1<sup>st</sup> Floor, 5-9-58/B, Fateh Maidan Road, Basheerbagh, Hyderabad, Telangana - 500029

$\alpha \in \mathcal{N}_{\mathcal{A},\mathcal{B}}$

$\mathcal{A} = \mathcal{A}_{\mathcal{P},\mathcal{I}}$

are hereby by directed appearing in person or through an advocate to show cause on or before 21.11.2022 to which date the case stands posted as to why in the circumstances set out in the petition and the affidavit filed therewith (copy enclosed) this WRIT PETITION should not be admitted.

$\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(x)$

$\lambda \in \mathcal{K}(\mathcal{E})$

I.A.No. 1 of 2022 :-

Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the writ petition, the High Court may be pleased to stay the Extra Ordinary General Body Meeting on 05.09.2022 at 3:00 PM (1ST) through Video Conferencing and its E Voting which will be commenced from 01.09.2022 to 04.09.2022 being conducted by the Respondent No.2 Company, pending disposal of W.P. No. 27894 of 2022, on the file of the High Court.

The Court made the following ORDER :- :

$\frac{1}{2\pi}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum$

والمعراقي والاستعادات

"Fresh notices to the Respondent Nos.3 and 4.

Learned counsel for the petitioner is permitted to take out notices to the Respondent Nos.3 and 4 through RPAD and file proof of the same into Registry ~

Learned counsel for the petitioner seeks time to file reply affidavit. Interim order is extended for a period of six (06) weeks.

$\mathbb{E}[\mathfrak{g}(\mathbf{x})]$

For:

Post the matter on 21:11:2022." $\rightarrow$

$\mathcal{L}{\mathcal{A}}(x) = \frac{1}{\sqrt{2}} \mathcal{L}{\mathcal{A}}(x) \mathcal{L}_{\mathcal{A}}(x)$

$\mathcal{D}^{\mathcal{A}}(x)$ $\mathcal{L}_{\mathcal{A}}$

$\mathcal{A}{\mathcal{M}}^{\mathcal{A}} \rightarrow \mathcal{A}{\mathcal{M}}$

$\mathbb{E}[\hat{A}^{\dagger}]=1$ $\mathcal{L}_{\mathcal{A}}$ $\mathcal{L} = {1, \ldots, n}$

$\mathbf{C} \in \mathbb{R}^{n \times n}$

$\mathcal{L}^{(n)}$

Sd/- P. VINOD KUMAR ASSISTANT REGISTRAR

SECTION OFFICER

$To$

The Singareni Collieries Company Limited, Kothagudem Collieries. Khammam District, Telangana-507101.

HEADER COPY!!

  1. Andhra Pradesh Industrial Development Corporation (APIDC), Parishrama Bhawan, 1<sup>st</sup> Floor, 5-9-58/B, Fateh Maidan Road, Basheerbagh, Hyderabad, Telangana - 500029 (Addressee Nos. 1 to 2 by RPAD)

$\mathcal{L} = \mathcal{L} \times \mathcal{L}$

$\frac{1}{\sqrt{2}}\frac{\partial^2}{\partial x^2} \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2} \right) \frac{\partial^2}{\partial x^2} \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2} \right) \frac{\partial^2}{\partial x^2}$

$\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1$

$\mathbb{Q}^{\mathbb{Z}}\times\mathbb{R}^{\mathbb{Z}}\times\mathbb{R}^{\mathbb{Z}}\to\mathbb{R}$

$\mathcal{L}^{\mathcal{A}}$ $\mathcal{A}^{\mathcal{A}}$ $\sim$ $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2$

$\tau_{\rm c} \sim \tau_{\rm c}$

$\mathcal{H}^{\mathcal{A}}_{\mathcal{A}}\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}$

$\gamma_{\rm{max}}$

$\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2}$

$\mathcal{L} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$

$\mathcal{O}{\mathbf{A}}(x) = \mathcal{O}{\mathbf{A}}(x)$

$\mathcal{F}^{\text{max}}{\text{max}}(\mathcal{B}{\text{max}})$

$\mathcal{A}_{\mathcal{A}}$

$\gamma_{\rm eq}$ $\mathbb{R}^2 \times \mathbb{R}^2$

${e_1,\ldots,e_{n-1}}$

$\mathcal{L}{\mathcal{A}}(x) = \mathcal{L}{\mathcal{A}}(x) + \mathcal{L}_{\mathcal{A}}(x)$

$\label{eq:1} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal$

$\mathcal{A}^{\mathcal{A}}$

$\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}}(x) = \frac{1}{\sqrt{2}} \sum{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{i=1}^{N} \frac{1}{\sqrt{2}} \sum_{$

$\label{eq:1} \begin{split} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \ \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) + \mathcal{L}_{\text{max}}(x) \end{split}$

المتابعين المتاريخ والمنابعين المتحدة.<br>المتابعين المتاريخ والمنابعين المتحدة

$\mathcal{L}{\mathcal{A}}(x) = \mathcal{L}{\mathcal{A}}(x)$ $\mathcal{L}^{\text{max}}_{\text{max}}(x)$

$\epsilon_{\rm{max}} \approx 1$

$\mathcal{A}^{\mathcal{A}}$

$\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}) + \mathcal{L}(\mathcal{M}) + \mathcal{L}(\mathcal{M})$

$\frac{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})} = \frac{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}$

$\mathcal{A} = \mathcal{A} = \mathcal{A} \mathcal{A} = \mathcal{A}$

$\frac{1}{\sqrt{2}}$

$\left\vert \cdot \right\rangle _{1} \left\vert \cdot \right\rangle$

$\mathcal{L}^{\mathcal{A}}$

$\mathcal{L}_{\mathcal{A}} = \frac{1}{2} \mathcal{L}$

$\mathcal{L}^{\mathcal{A}}$

$\mathcal{L}_{\mathcal{A}}$

$\gamma_{\mu}$

$\mathcal{L} = { \mathcal{L} \mid \mathcal{L} \in \mathcal{L} }$

  1. Two CCs to the G.P. for Industries, High Court of A.P., at Amaravati(OUT)

$\ell_{\rm{max}}(z)$

$\varphi(t)\left(\frac{t}{\tau}\right)$

$\lambda = \sqrt{\frac{2}{\pi}}$

${j_{k}}_{k=1}^{n}$

$\partial \Omega_{\rm{eff}} \approx 1$ wakiti 🔭

$\mathcal{B}^{\mathrm{c}}{\mathrm{c}}\mathcal{M}^{\mathrm{c}}{\mathrm{c}}$ $\mathcal{A} \in \mathcal{A} \subset \mathcal{A}$ $\sim 200~\mathrm{GeV}^{-1}$

$\mathcal{A}$

$\mathcal{L}^{\mathcal{L}}$ ${x^i}_{i=1}^n\in\mathbb{R}^n$

$\frac{d}{d}\left(\frac{\partial}{\partial \tau} - \frac{\partial}{\partial \tau}\right)$

$\mathcal{L}{\text{max}}(\mathcal{L}{\text{max}})$

$\mathbb{Q}(\mathcal{E}_1,\mathcal{P}_M)$

$\frac{1}{\beta}$

$\hat{\mathcal{A}}$

$\frac{1}{12}$

$\hat{\mathbf{t}}$ $\hat{\tau}_i$

$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\mathcal{L}(\mathcal{A})$

$\mathcal{L}_{\mathcal{A}}$

    1. One CC to Sri N. Ashwani Kumar, Advocate(OPUC)
    1. One spare copy.

$\mathcal{L}$

MSB

HIGH COURT

the state of the state of the
$\mathcal{L}^{\text{max}}{\text{max}}\left(\mathcal{L}^{\text{max}}{\text{max}}\right) = \mathcal{L}^{\text{max}}{\text{max}}\left(\mathcal{L}^{\text{max}}{\text{max}}\right)$
the state of the property of the state of
$\label{eq:1} \begin{split} \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) = & \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) = \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) \ & \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) = & \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) = \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) \ & \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) = & \mathcal{L}{\text{max}}(\mathbf{q},\mathbf{q}) = & \mathcal{L}_{\text{max$
$\mathcal{A}_{\mathcal{A}}$$\label{eq:1} \mathcal{H} = \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \math$

$\sim 10^{-2}$

AVSS,J & SV,J

$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = \frac{\partial \mathcal{L}}{\partial \mathcal{L}} = \frac{\partial \mathcal{L}}{\partial \mathcal{L}}$

$\mathbb{F}_p$

$\frac{1}{\varepsilon}$

$\hat{b}_{\beta,\gamma}$

$\frac{1}{\mu} \leq \log$ $\frac{1}{\sqrt{\frac{2\pi}{3}}}$ $\mathcal{A} = {1,2}$ $\mathbb{Q}(\mathcal{G})}$

$\frac{1}{\sqrt{2}}\frac{\partial^2}{\partial t^2}$ $\mathcal{L}_{\mathcal{F}}$

$\mathcal{M}^{\text{max}}_{\text{max}} \approx 2$ $\mathfrak{N}(\mathfrak{h})$

$\langle \zeta \rangle_{\vec{q}}$ $\mathfrak{L}^{\mathbb{R}^n\times \mathbb{R}^n}$ $\leq \beta \leq \varepsilon$

$\mathcal{W}{\mathcal{A}}$ in A. $\langle \Delta \hat{A} \rangle{\rm{max}} = 1$ $\mathbb{E}_{\mathbf{z}}\left(\frac{\mathbf{z}}{\mathbf{z}}\right)^{n}$ $\mathcal{M} \subset \mathcal{M}$

103 NOV Luck

$\theta_{\rm c} \gg \frac{1}{\tau}$

$\left\langle \cdot \right\rangle_{\cdot}$ $\mathcal{L}$

DT.17.10.2022

$\overline{a}$ $\overline{ }$

$\mathcal{L}_{\mathcal{A}}$ ORDER

POST THE MATTER ON 21.11.2022

والمهيمة فالأفلاء وتأومينا وووارات ومجهودين $\hat{\mathbf{r}}$

FRESH NOTICE BEFORE ADMISSION

W.P.No. 27894 of 2022

EXTENSION OF INTERIM DIRECTION

Share This Order

Case History of Orders

Order(9) - 5 Jan 2023

Final Order

Click to view

Order(7) - 1 Dec 2022

Interim Order

Click to view

Order(8) - 1 Dec 2022

Interim Order

Click to view

Order(6) - 29 Nov 2022

Interim Order

Click to view

Order(5) - 17 Oct 2022

Interim Order

Viewing

Order(4) - 26 Sept 2022

Interim Order

Click to view

Order(3) - 21 Sept 2022

Interim Order

Click to view

Order(1) - 1 Sept 2022

Interim Order

Click to view

Order(2) - 1 Sept 2022

Interim Order

Click to view