Vetrivel Minerals (V.V. Minerals) vs. The Union Of India

Court:High Court of Andhra Pradesh
Judge:Hon'ble Kiranmayee Mandava
Case Status:Unknown Status
Order Date:19 Sept 2022
CNR:APHC010450982022

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission (Mines And Industries)

Before:

Hon'ble R Raghunandan Rao

Listed On:

19 Sept 2022

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

(SHOW CAUSE NOTICE BEFORE ADMISSION) IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVAT (Special Original Jurisdiction) MONDAY, THE NINETEENTH DAY OF SEPTEMBER TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRI JUSTICE R RAGHUNANDAN RAO

$\mathcal{L}^{\mathcal{L}}_{\mathcal{D}}$

$\mathcal{L} = {1,2,3}$

Between:

M/s. Vetrivel Minerals (V.V. Minerals), Plot No.A-3, Phase-IV, Near administrative building, VSEZ, Duvvada, Visakhapatnam, Andhra Pradesh, Rep. by its Authorised Signatory and Manager, Mr. Emmanuel Gnana Henry.

... Petitioner

AND

WRIT PETITION NO: 27763 OF 2022

t dit op a $\hat{p}{\rm{max}} \sim \hat{p}{\rm{max}} \sim 10^6$

  • The Union of India., Ministry of Mines: ShastriBhawan, Dr. Raiendra Prasad Road, New Delhi -110001 Rep. by its Secretary,
    1. The State of Andhra Pradesh, Rep. by its Secretary, Department of Mines and Geology, A.P. Secretariat, Velagapudi, Amaravati,
    1. The Director of Mines and Geology, Government of Andhra Pradesh, Sri Anjaneya Towers, D.No. 7-104; B-Block, 5th and 6th Floors, Vijayawada, Ibrahimpatnam, Andhra Pradesh 521456
    1. Andhra Pradesh Mineral Development Corporation Ltd, D.No.294/MD, 100ft. road, Kanuru, Vijayawada - 521 137, Andhra Pradesh. Rep. by its Vice Chairman and Managing Director.
    1. The Assistant Director of Mines and Geology, ChinnaBondilipuram, Near Tupakula Buildings, Srikakulam- 582 001.
    1. M/s. Transworld Garnet India Private Limited, a company incorporated under Companies, having registered Office at No.34, M.G.R. Road, Kalakshetra Colony, Besant Nagar, Chennai, Rep. by its Managing Director.

.... Respondents

$\mathcal{L} = \mathcal{L} \mathcal{L}$ WHEREAS the Petitioner above named through his Advocate Sri SUDHAKARA RAO AMBATI presented this Petition under Article 226 of the Constitution of India praying that in the circumstances stated in the affidavit filed therewith, the High Court may be pleased to issue a Writ, order or Direction more particularly in the nature of WRIT OF MANDAMUS declaring the action of the 3rd respondent in the alleged confiscation of minerals on 21-11-2018 as well as Memo No.4337687/D1-1/2021 dt.08-03-2021 under which a Show Cause Notice was issued seeking explanation why the confiscated material should not be shifted to the custody of 4th respondent as well as the Mediator Nama Dt.11-05-2021 under which the confiscated minerals said to have been shifted to the custody of 4th respondent. even without issuing any notice to the petitioner though the minerals were said to have been seized from its premises on 21-11-2018 as well as under Memo dt.08-03-2021, as being illegal, arbitrary and in violation of provisions of Sections 21 and 23 (c) of Mines and Minerals (Development and Regulation) Act, 1957 and in violation of Rules 8 to 12 of The Andhra Pradesh Mineral Dealers Rules, 2017 as notified in G.O.Ms.No.17, Industries and Commerce (M-II) Department, dated 29.01.2018 and $\mathcal{L}^{\mathcal{A}}_{\mathcal{A}}\left(\mathcal{A}\right)$

$\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$ $\mathbb{E}^{(M)}\left(\mathcal{F}{\mathcal{C}}\otimes\mathcal{F}{\mathcal{C}}\right)$ $\mathcal{H}^{\mathcal{L}}_{\mathcal{L}}\subset\mathcal{L}^{\mathcal{L}}$ $\mathcal{L} = \mathcal{L} \oplus \mathcal{L}$

consequently to set aside the alleged confiscation of minerals on 11.05.2021 under a mediator report in the interest of justice.

1924年9

AND WHEREAS the High Court upon perusing the petition and affidavit filed herein and upon hearing the arguments of Sri SUDHAKARA RAO AMBATI Advocate for the Petitioner and Sri N.Harinath Assistant Solicitor General of India for respondent No.1 and GP for Mines and Geology for Respondent Nos. 2, 3 & 5 and Sri V.R. Prasanth SC for Respondent, No.4, directed issue of notice to the Respondents herein to show cause as to why this WRIT PETITION should not be admitted. $\frac{1}{\lambda_1} \cdot \lambda_2$

You viz: $\frac{1}{2}$

$\overline{1}$

$\overline{1}$

$\frac{1}{4}$

    1. The Secretary, Union of India, Ministry of Mines, ShastriBhawan, Dr. Rajendra Prasad Road, New Delhi -110001.
    1. The Secretary, Department of Mines and Geology, A.P. Secretariat, State of Andhra Pradesh, Velagapudi, Amaräyati:
    1. The Director of Mines and Geology, Government of Andhra Pradesh, Sri Anjaneya Towers, D.No. 7-104, B-Block, 5th and 6th Floors, Vijayawada, Ibrahimpatnam, Andhra Pradesh 521456
    1. The Vice Chairman and Managing Director, Andhra Pradesh Mineral Development Corporation Ltd, D.No.294/MD, 100ft. road, Kanuru, Vijayawada - 521 137, Andhra Pradesh.
    1. The Assistant Director of Mines and Geology, ChinnaBondilipuram, Near Tupakula Buildings, Srikakulam-532 001.
    1. M/s. Transworld Garnet India Private Limited, a company incorporated under Companies, having registered Office at No.34, M.G.R. Road, Kalakshetra Colony, Besant Nagar, Chennai, Rep. by its Managing Director.

are be and hereby directed to show cause either appearing in person or through an Advocate, as to why in the circumstances set out in the petition and the affidavit filed therewith (copy enclosed) this WRIT PETITION should not be admitted, on or before 13-10-2022 on which date the case stands posted for hearing.

$\mathbb{Q}^{k_1+\cdots +k_{k-1}}$

$s\in\mathbb{R}^n$

$\frac{1}{4}$

Sd/-M.SRINIVAS

ASSISTANT REGISTRAR

For ASSISTANT REGISTRAR

The Court made the following: ORDER:

"Notice before admission.

Learned counsel for the petitioner is permitted to take out personal notice to respondent No.6 by RPAD and file proof of service by the next date of hearing.

//TRUE COPY//

计数量设计 and Almany

$\mathcal{O}(\mathcal{O}{\mathcal{O}{\mathcal{O}{\mathcal{O}{\mathcal{O}{\mathcal{O}{\mathcal{O}{\mathcal{O}{\mathcal{O}_{\mathcal{O}}}}}}}}})$

$\mathcal{L}(\mathcal{L})\mathcal{L}(\mathcal{L})$

$\mathbf{1} = \mathbf{1} \mathbf{1} = \mathbf{1}$

Post on 13.10.2022."

  1. The Secretary, Union of India; Ministry of Mines, ShastriBhawan, Dr. Rajendra Prasad Road, New Delhi -110001.

$\lambda_{\rm{max}} \geq 1$ ${ \ldots, \mathcal{L}^{\mathcal{A}} }$

    1. The Secretary, Department of Mines and Geology, A.P. Secretariat, State of Andhra Pradesh, Velagapudi, Amaravati.
    1. The Director of Mines and Geology, Government of Andhra Pradesh, Sri Anjaneya Towers, D.No. 7-104, B-Block, 5th and 6th Floors, Vijayawada, Ibrahimpatnam, Andhra Pradesh 521456
    1. The Vice Chairman and Managing Director, Andhra Pradesh Mineral Development Corporation Ltd, D.No.294/MD, 100ft. road, Kanuru, Vijayawada - 521 137, Andhra Pradesh. al exe M
    1. The Assistant Director of Mines and Geology, ChinnaBondilipuram, Near Tupakula Buildings, Srikakulam- 532 001.
    1. M/s. Transworld Garnet India Private Limited, a company incorporated under Companies, having registered Office at No.34, M.G.R. Road, Kalakshetra Colony, Besant Nagar, Chennai, Rep. by its Managing Director. (by RPADalong with a copy of petition and memorandum of grounds)
    1. Two CC's to GP for Mines and Geology, High Court of AP, Amaravati[OUT]
    1. One CC to SRI. V.R. PRASANTH, SC, Advocate [OPUC]
    1. One CC to SRI.N.Harinath Assistant Solicitor General of India, Advocate TOPUCT $\mathcal{L}_{\rm{A2}} \approx 20 , \mathrm{g} , \mathrm{s}^{-1}$

$\mathcal{A}(\mathcal{E}{\mathcal{A}}) = \mathbb{E} \left[ \frac{1}{\sqrt{2}} \mathcal{A}^{\dagger}(\mathcal{E}{\mathcal{A}}) \right] , .$ いりします。 오늘 공사 $\langle \langle \partial \phi \rangle \rangle = \langle \partial \phi \rangle$ $\mathcal{L}{\mathcal{A}}(p) = \mathcal{L}{\mathcal{A}}(p) \mathcal{L}{\mathcal{A}}(p)$ $\stackrel{\triangle}{\longrightarrow} \overline{f_1} \overline{y_1} \cup{i \in \mathbb{Z}} \overline{\cdot}$ $\mathcal{A} = \bigcup_{i=1}^n \mathcal{A}i$ $\mathcal{C}^{(0,1)}{\mathcal{A}}\mathcal{C}^{(0,1)}{\mathcal{A}}\mathcal{C}^{(0,1)}{\mathcal{A}}\mathcal{A}$ $\mathcal{M} \in \mathcal{M} \cap \mathcal{M} \times \mathcal{M}$ $\mathbb{C}^{\mathbb{Z}}\times\mathbb{R}^{\mathbb{Z}}\times\mathbb{R}^{\mathbb{Z}}\to\mathbb{R}^{\mathbb{Z}}$ $f_{\alpha\beta}^{\alpha\beta} = -\frac{1}{2}f_{\alpha}^{\alpha}$ $\mathbb{E} \left( \mathcal{F}{\mathcal{A}} \right) \leq \mathbb{E} \left( \mathcal{F}{\mathcal{A}} \right)$ $\mathcal{L}{\text{max}} \sim \mathcal{L}{\text{max}}$ $\mathcal{L}^{\text{max}}(\mathcal{M}{\text{max}}(\mathcal{M}^{\text{max}}))$ $\frac{2\pi\sqrt{3}}{\pi\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{3}}\frac$ $\frac{\partial \mathcal{H}}{\partial \mathcal{H}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{\partial \mathcal{H}}{\partial \mathcal{H}}$ $\mathbb{R}^2 \to \mathbb{R}^2$ $\mathcal{L}(\mathcal{H}) = \mathcal{L}(\mathcal{H})$ $\mathcal{L}^{\text{max}}{\text{max}}(x) = \mathcal{L}^{\text{max}}{\text{max}}(x)$ $\mathcal{L}{\text{max}}$ ing a third in $\mathbb{E}={x_{1},\ldots$ ${(\vec{x}i){i=1}^{n-1} \mid x_i \geq 1}$

  1. One CC to SRI. SUDHAKARA RAO AMBATI Advocate [OPUC] $\mathcal{A} \in \mathbb{R}^{n \times n}$

$\gamma_{\rm{max}}(k)$

$\chi_{\rm{max}}=\frac{1}{2}\chi\chi_{\rm{max}}$ $\mathcal{F} \in \mathcal{F}{\mathcal{F}}$ $\mathcal{O}(\mathcal{O}(\log n))$ $\frac{1}{\sqrt{\frac{2\pi}{\sqrt{2}}\rho\frac{\sqrt{2}}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{\sqrt{2}}\rho\sqrt{\frac{2\pi}{$ And Same $\left\langle \left\langle \psi{\ell} \right\rangle \right\rangle_{\ell} = \left\langle \left\langle \psi_{\ell} \right\rangle \right\rangle_{\ell} \left\langle \psi_{\ell} \right\rangle_{\ell}$

$\mathcal{M}_{\mathcal{M}}$

  1. One spare copy $\mathsf{PR}$

To,

HIGH COURT

RRRJ

$\hat{\mathcal{L}}$

$\mathbb{E}^{\mathbb{C}}$

$\hat{\vec{t}}$

DATED:19/09/2022

POST ON 13.10.2022

$\overline{\mathcal{A}}$ $\hat{\mathbf{r}}$ $\frac{1}{2}$ $\bar{\mathcal{L}}$ $\hat{\mathcal{A}}$

NOTICE BEFORE ADMISSION

WP.No.27763 of 2022

$\begin{array}{c} \text{Tr}(\mathbf{r}) = \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times \mathbf{r} \times $ $\mathcal{L} = \frac{1}{2} \mathcal{L} \mathcal{L}$ $\mathcal{L}(\mathcal{A})$ $\frac{d\mathcal{L}}{d\mathcal{L}} = \frac{d\mathcal{L}}{d\mathcal{L}}$ $\mathcal{L} \stackrel{\mathcal{L}}{\sim} \mathcal{L} \stackrel{\mathcal{L}}{\sim} \mathcal{L} \stackrel{\mathcal{L}}{\sim} \mathcal{L}$ $\mathcal{A} = { \mathcal{A} \in \mathbb{R}^2 }$ $\mathcal{H} = \frac{1}{\sqrt{2}} \sum_{\mathbf{q} \in \mathcal{A}} \frac{1}{\mathcal{H}^2} \sum_{\mathbf{q} \in \mathcal{A}} \frac{1}{\mathcal{H}^2} \sum_{\mathbf{q} \in \mathcal{A}} \frac{1}{\mathcal{H}^2} \sum_{\mathbf{q} \in \mathcal{A}} \frac{1}{\mathcal{H}^2} \sum_{\mathbf{q} \in \mathcal{A}} \frac{1}{\mathcal{H}^2} \sum_{\mathbf{q} \in \mathcal{A}} \frac{1}{\mathcal{H}^2} \sum_{\mathbf{q} \in \mathcal{A}}$ $\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L}$ $\begin{array}{c} \mathcal{L}{\text{max}}(\mathcal{L}) = \mathcal{L}{\text{max}}(\mathcal{L}) \ \mathcal{L}{\text{max}}(\mathcal{L}) = \mathcal{L}{\text{max}}(\mathcal{L}) \ \mathcal{L}{\text{max}}(\mathcal{L}) = \mathcal{L}{\text{max}}(\mathcal{L}) \end{array}$ $\label{eq:Gaussian} \mathcal{G}{\text{max}} = \frac{1}{\sqrt{2}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal{G}{\text{max}}^{\text{max}} \mathcal$ $\left| \mathcal{H} \right|{\mathcal{H}^{\infty}{\infty}(\Omega)} \leq \left| \mathcal{H} \right|{\mathcal{H}^{\infty}(\Omega)}$ $| \varphi |{\mathcal{L}^\infty} \leq | \varphi_1 |^{1/2}$ $\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\frac{1}{2}}\left(\frac{1}{\sqrt{2\pi}}\right$ $\mathcal{A}^{\mathcal{A}}(\mathcal{R},\mathcal{R},\mathcal{R}^{\mathcal{A}})$ $\mathbb{E}[\mathcal{G}(\mathcal{G})] = \mathbb{E}[\mathcal{G}(\mathcal{G})]$ ${ \exp(\frac{1}{2} \pi \lambda^2 \log \frac{1}{2} \lambda) }$ ${P_{\mathcal{L}}^{(k)}}_{k=1}^{\infty}$ $\frac{1}{\sqrt{\frac{2\pi}{\lambda_0}}}\frac{1}{\sqrt{\frac{2\pi}{\lambda_0}}}\frac{1}{\sqrt{\frac{2\pi}{\lambda_0}}}\frac{1}{\sqrt{\frac{2\pi}{\lambda_0}}}}$

$\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{1/2} \left(\frac{1}{\sqrt{2}}\right)^{1/2} \left(\frac{1}{\sqrt{2}}\right)^{1/2}$ $\gamma_{\rm{max}}(\epsilon_{\rm{A}}) \sim 1$

$\mathcal{C}{\mathcal{A}}\in\mathcal{L}(\mathcal{B}{\mathcal{A}}^{(k)})$ $\mathcal{L} \geq \mathcal{L} \geq \mathcal{L}$

$\hat{\phi}_{\rm{c}}$

$\mathcal{L}_{\mathcal{A}}$

$\hat{\theta} = \frac{1}{2} \frac{m_{\text{max}}}{\tau}$ 经收拾 电电阻

$\mathcal{L}_{\text{max}}(x)$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

$\frac{d}{d} \left( \frac{d}{d} \right) = \frac{1}{d}$

$\mathcal{G}{\mathcal{I}}$ $\gamma{\rm{max}}$ $\mathcal{O}(\frac{1}{\sqrt{2}}\sqrt{\frac{1}{\sqrt{2}}}\sqrt{\frac{1}{\sqrt{2}}})$

${ \psi_i }_{i=1}^N$ $\left\langle \frac{1}{\sqrt{2}}\right\rangle \left\langle \frac{1}{\sqrt{2}}\right\rangle \left\langle \frac{1}{\sqrt{2}}\right\rangle$ $\mathcal{L} = \left{ \begin{array}{ll} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{array} \right.$

$\frac{1}{\sqrt{2}}\frac{\partial^2}{\partial x^2}$ $\mathcal{P}{\text{out}}(\mathcal{Y}, \mathcal{P}{\text{out}})$ $\left\langle \mathcal{A}^{\dagger}{\mu} \mathcal{A}^{\dagger}{\mu} \mathcal{A}^{\dagger}{\mu} \mathcal{A}^{\dagger}{\mu} \right\rangle_{\mu}$ $\mathcal{A}^{\text{max}}_{\text{max}} \approx 10^{-10}$

$\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2}$ $\gamma \in \mathcal{C}(\mathcal{N}_{\mathcal{A}}^{(1)}(\mathbb{R}))$

$\rightarrow \mathbb{R}$ $\lambda_{\mathcal{F}}(x)$

$\mathcal{A}_{\mathrm{max}}$

${(\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_1), \ldots,$

$\frac{1}{\sqrt{12}\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{$

$\mathbb{R}^{\frac{2n+1}{n}}$

$\langle \psi_{\rm{max}} \rangle = 0.7$ $\mathcal{H}^{\mathcal{A}}(k) \to \mathcal{H}^{\mathcal{A}}_{\mathcal{A}}(k)$

$\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1$

$\mathbb{R}^{n\times n}$