B.Venkatesh vs. K.Edukondalu @ Yedukondalu

Court:High Court of Andhra Pradesh
Judge:Hon'ble Subba Reddy Satti
Case Status:Unknown Status
Order Date:23 Aug 2022
CNR:APHC010411152022

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

For Admission (Crp Matters)

Before:

Hon'ble Battu Devanand

Listed On:

23 Aug 2022

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

(SHOW CAUSE NOTICE BEFORE ADMISSION) IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVAT

TUESDAY, THE TWENTY THIRD DAY OF AUGUST TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRI JUSTICE BATTU DEVANAND CIVIL REVISION PETITION NO: 1609 OF 2022

Between:

B.Venkatesh, Age.50 yrs, S/0. Late B. Subbaiah, Occ. Business, R/O.D.No.1-4-1254/405, ID5MT Main Road, Near R.T.O. Office, Raichur (Town and Post and Distric.), Karnataka State-584101.

.... Petitioner

AND

K.Edukondalu @ Yedukondalu, S/o. K. Venkata Narasimhulu @ Narasimhulu, Age 52 years, Occ. Business, R/O D No.9426, A6, Rajampeta (Town and Post), Y.S.R., Kadapa District.

Respondent

WHEREAS the Petitioner above named through his Advocate Sri NAGESWARA RAO V presented this Petition under Article 227 of the Constitution of India praying that, the High Court may be pleased to present this Memorandum of Civil Revision Petition having been aggrieved by the Order dated 06.07.2022 passed in I.A No. 326 of 2021 in O.S No. 02 of 2021 on the file of III Addl District Judge, Rajampet. $\mathbb{N}(\mathcal{H}^{\mathcal{A}})$

AND WHEREAS the High Court upon perusing the petition and memorandum of grounds filed herein and upon hearing the arguments of Sri NAGESWARA RAO V Advocate for the Petitioner, directed issue of notice to the Respondents herein to show cause as to why this CIVIL REVISION PETITION should not be admitted. You viz:

以及為市

K.Edukondalu @ Yedukondalu, S/o. K. Venkata Narasimhulu @ Narasimhulu, Occ. Business, R/O D.No.9426, A6, Rajampeta (Town and Post), Y.S.R., Kadapa District.

are be and hereby directed to show cause either appearing in person or through an Advocate, as to why in the circumstances set out in the petition and the affidavit filed therewith (copy enclosed) this CRIMINAL PETITION should not be admitted, on or before 20-9-2022 on which date the case stands posted for hearing.

The Court made the following: ORDER:

"Notice before admission.

Learned counsel for the petitioner is permitted to take out personal notice to the respondent or his counsel in the Court below by registered post acknowledgement due and file proof of service into the Registry within a period of three (03) weeks

Post the matter after on 20.09.2022,

Sd/- A. VIJAY BABU ASSISTANT REGISTRAR

SECTION OFFICER

//TRUE COPY//

F

  1. K.Edukondalu @ Yedukondalu, S/o. K. Venkata Narasimhulu @ Narasimhulu, Occ. Business, R/O D.No.9426, A6, Rajampeta (Town and Post), Y.S.R.,<br>Kadapa District.(by RPAD- along with a copy of petition and memorandum of grounds) $\mathbb{E} \left( \frac{1}{\sqrt{2}} \right) \cdot \frac{1}{\sqrt{2}} \mathbb{E} \left( \frac{1}{\sqrt{2}} \right) \cdot \frac{1}{\sqrt{2}} \mathbb{E} \left( \frac{1}{\sqrt{2}} \right) \cdot \frac{1}{\sqrt{2}} \mathbb{E} \left( \frac{1}{\sqrt{2}} \right) \cdot \frac{1}{\sqrt{2}} \mathbb{E} \left( \frac{1}{\sqrt{2}} \right) \cdot \frac{1}{\sqrt{2}} \mathbb{E} \left( \frac{1}{\sqrt{2}} \right) \cdot \frac{1}{\sqrt{2}} \mathbb{E} \left( \frac{1}{\sqrt$

$\frac{1}{\sqrt{2}}\left(\frac{1}{K}\right)^{1/2}$

$\gamma = \frac{1}{2\pi}$ $\frac{\partial}{\partial t} \frac{\partial \mathbf{v}_i}{\partial t} \frac{\partial \mathbf{v}_i}{\partial t} \frac{\partial \mathbf{v}i}{\partial t}$ $\mathbb{C}^{\mathbb{C}}{\mathrm{reg}}(\mathbb{C})\to \mathbb{C}$ $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{1/2}\left(\frac{1}{\sqrt{2}}\right)^{1/2}$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\hat{\mathbf{x}}$

$, , ,$ $\left\langle \hat{\mathbf{e}}_{\mathrm{max}}\right\rangle$

$\langle \hat{e}_i, \hat{e}_j \rangle$ $\mathcal{W}(\mathbb{D})=\infty$ $\mathcal{L} = \left{ \begin{array}{c} \mathcal{L} \ \mathcal{L} \end{array} \right}$ $\mathbb{R}^{n\times n}$ $\frac{\partial}{\partial x} \left( \frac{\partial}{\partial x} \right)^2 = 0$ 计算术系 $\mathcal{A} = \mathcal{A}$

$\mathcal{L}_{\mathcal{A}}$ $\hat{\mathcal{A}}$ $\hat{\mathcal{F}}_i$

$\sqrt{d\tau}$

$\overline{a}$

$\langle \epsilon_{\rm{out}} \rangle$ $\epsilon = \hat{\phi}_{j,k}$ $\mathcal{L} = \left{ \begin{array}{ll} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{array} \right}$

$\chi_{\rm{max}}^{(n-1)}$

$\langle \cdot, \cdot \rangle$

$\mathcal{L}^{\text{max}}$

$\hat{\mathcal{A}}$

$\lambda = \frac{1}{2} \cdot$ $\mathcal{A}^{\mathcal{A}}$ $\frac{1}{\sqrt{2}}\sum_{i=1}^n$ $\mathbb{I}$

ξĎ $\hat{\mathcal{A}}$ $\frac{1}{\epsilon}$

$\left{ \left{ \begin{array}{c} \mathcal{L}{\text{max}} \in \mathcal{L}{\text{max}} \left{ \mathcal{L}_{\text{max}} \right} \end{array} \right} \right}$ $\sim \epsilon^{-1}$

$\mathcal{L}_{\mathcal{A}}(x)$

    1. One CC to SRI. NAGESWARA RAO V Advocate [OPUC]
  • $\cdot$ 3. One spare copy $\frac{1}{4\pi}$
  • $\mathbf{p}\mathbf{r}$

$\mathcal{L}\mathbf{\hat{O}_{j}}$

$\mathcal{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$

$\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ $\mathcal{A} = {1,2,3}$

$\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x) + \mathcal{L}{\text{max}}(x$ $\mathcal{L}^{\mathcal{A}}{\mathcal{A}}(x) = \mathcal{L}^{\mathcal{A}}{\mathcal{A}}(x)$

$\mathcal{L}(\mathcal{H})$

$\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{$ $\mathcal{L}^{\text{max}}{\text{max}}(\mathcal{L}^{\text{max}}_{\text{max}})$

$\mathcal{L} = \mathcal{L} \times \mathcal{L}$

$\mathcal{L}(\mathcal{L})$ $\mathcal{O}(\log n)$

HIGH COURT

DEVJ

DATED:23/08/2022

POST THE MATTER ON 20.09.2022

NOTICE BEFORE ADMISSION

CRP.No.1609 of 2022

Share This Order

Case History of Orders

Order(4) - 29 Sept 2022

Interim Order

Click to view

Order(5) - 29 Sept 2022

Interim Order

Click to view

Order(1) - 23 Aug 2022

Interim Order

Click to view

Order(2) - 23 Aug 2022

Interim Order

Viewing

Order(3) - 23 Aug 2022

Interim Order

Click to view