Pinjari Musum Vali vs. State Of Andhra Pradesh

Court:High Court of Andhra Pradesh
Judge:Hon'ble Dr V R K Krupa Sagar
Case Status:Unknown Status
Order Date:6 Sept 2022
CNR:APHC010348912019

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

For Extension Of Interim Orders

Before:

Hon'ble J K Maheshwari

Listed On:

1 Oct 2020

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI

TUESDAY. THE SIXTH DAY OF SEPTEMBER, TWO THOUSAND AND TWENTY TWO :PRESENT:

THE HONOURABLE SRI JUSTICE SRI K SREENIVASA REDDY

CRIMINAL PETITION NO: 6362 OF 2019

Between:

    1. Pinjari Musum Vali, S/o Pinjari China Modin, D.No.77-112-A1, Chinthalamuni Nagar, Kallur Estate, Kurnool-518003, A1, Chinthalamuni Nagar, Kallur Estate, Kurnool-518003.
    1. Pilli Ratnakar, S/o Pitchireddy, D.No. 45/142-26-E-11-c-4, Veenus Nagar, Near VR Raithu Bazar, Kurnool-518003, Administrator, M/s. Narmada Sagar Agri Seeds Pvt. Ltd, D.No. 77-112-A1, Chinthalamuni Nagar, Kallur Estate, Kurnool-518003

$\mathcal{M} = \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left$ Petitioners/Accused Nos.(A1 & A2) AND

$\mathcal{L} \in \mathcal{P}_\mathcal{L} \times \mathcal{X}$

    1. State of Andhra Pradesh, Represented by Public Prosecutor High Court of A.P, Amaravati. Through inspector of police, Kothapet P.S, Guntur.
    1. Kundeti Venkata Srinivasarao, S/o Krishnarao, Asst Director $\mathsf{of}$ Agriculture, (Regular) Guntur Sub-Division, Guntur. (De-facto Complainant) $\mathbf{1} \cdot \mathbf{1} = \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1}$ .....Respondents

Petition under Section 482 of Cr.P.C, praying that in the circumstances stated in the memo of grounds filed herein, the High Court may be pleased to Quash C.C.No.644 / 2018 in (Cr.No. 239 of 2018 of Kothapet P.S. Guntur Urban) on the file of IV Addl. Junior Civil Judge, Guntur filed against the petitioners for the offences U/S 420 I.P.C., Sec 15 of Environment (Protection Act) and Sec. 6,7,21 and 23 of the Seeds Act.

IA NO: 1 OF 2019:

Petition under Section 482 of Cr.PC, praying that in the circumstances stated in the memo of grounds filed in Cripperthe High Court may be pleased to stay all further proceedings in C.C.No.644 of 2018 on the file of IV Addl. Junior Civil Judge Guntur including the appearance of the petitioners (A1 and A2), pending disposal of CRLP No. 6362 of 2019, on the file of the High Court.

The petition coming on for hearing, upon perusing the petition and memorandum of grounds filed therein and Orders of High Court dated 12-12-2019, 20-01-2020, 05-02-2020 & 01.10.2020 made herein and upon hearing the arguments of Sri M Chalapati Rao, Advocate for the Petitioners, and of Public Prosecutor for Respondent No.1, the Court made the following

${1,2}\cup{1,3}$ $\mathcal{D}(\mathcal{M})\subseteq \mathcal{M}$ "我是我答 $\mathcal{P}^{\text{max}}{\text{max}}\in E^{\text{max}}{\text{max}}$ $\mathcal{L} = \left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \mathcal{L} \left(\frac{1}{\sqrt{2}}\right) \mathcal{L}$

ORDER:

"Interim order granted earlier is extended for a period of eight weeks. Post after six weeks."

Sd/- V. SATYA NARAYANA DEPUTY REGISTRAR

For ASSISTANT REGISTRAR

$\bar{\phantom{a}}$

ĩ

//TRUE COPY//

To,

    1. The IV Additional Junior Civil Judge, Guntur
    1. The Station House Officer, Kothapet Police Station, Guntur, Guntur District

$\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-$

    1. Two CCs to Public Prosecutor, High Court of A.P., at Amaravati (OUT)
    1. One CC to Sri. M Chalapati Rao Advocate [OPUC]
    1. One spare copy

psk

HIGH COURT

$\frac{1}{3}$ $\hat{\mathcal{X}}$ $\frac{1}{\sqrt{2}}$

SRK,J

$\hat{\mathcal{A}}$

$\mathcal{Y}$

$\hat{E}^{\dagger}$

$\mathcal{L}$

DATED: 06-09-2022

NOTE : POST AFTER SIX WEEKS

ORDER

CRLP.No.6362 of 2019

EXTENSION OF INTERIM ORDER

$\overline{a}$

$\omega_{\rm{max}} \sim 10^{-3}$ $\sim$ $\mathcal{C}_{\mathcal{A},\mathcal{A}}$ $\mathcal{A} \in \mathcal{A}$

$\mathbb{E}[\mathbb{E}[\mathcal{M}\infty)]$ $| \hat{u} |{L^2(\mathbb{R}^2)} \leq \frac{1}{2} | \hat{v} - \hat{v} |_{L^2(\mathbb{R}^2)}$

$\mathcal{L}{\mathcal{A}} \in \mathbb{R}^{N \times 1}$ $\mathcal{P}{\text{max}}(\mathcal{A}) \geq \mathcal{P}_{\text{max}}(\mathcal{A})$

$\mathcal{O}(\frac{1}{\log n})^{\frac{1}{2} \log n} \mathcal{O}(\frac{1}{\log n})$ $\pi_{\mathcal{C}}^{\mathcal{C}}\to \mathcal{C}^{\mathcal{C}}\to \mathcal{N}^{\mathcal{C}}$ $\gamma \sim \langle \zeta_1 \zeta_2 \rangle_{\rm c}$

$\label{eq:1} \begin{aligned} \mathcal{L} = \begin{bmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{bmatrix} \ \mathcal{L} = \begin{bmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{bmatrix} \end{aligned}$

$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

$\frac{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})} = \frac{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}$

${ \alpha_{i} }_{i=1}^{n}$

$\mathcal{O} \sim \mathbb{R}^{3 \times 1}$ $\frac{1}{\log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log $

$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

$\mathcal{L} = \frac{1}{2} \mathcal{L}$ $\mathcal{N} = \mathcal{N} \times \mathcal{N}$

$\sim \sim 600$

$\mathcal{F}{\mathcal{C}}$ $\mathcal{A}(\mathcal{F},\mathcal{F})$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\gamma{\rm{max}}=1$

$\mathcal{L}_{\mathcal{L}}$

$\gamma_{\rm{eff}} = 1.5$

$\pi_{\mathcal{A}}^{\mathcal{A}}$

$\mathcal{L}(\mathcal{M}) = \mathcal{M}(\mathcal{M})$ $\varphi^{(1)}{\alpha\beta\gamma}(\omega)$ $\mathcal{V}{\mathcal{A}}$ $\tau_{\rm in} = \tau_{\rm in}$

$\begin{array}{c} \mathcal{A} \in \mathcal{A} \ \mathcal{A} \in \mathcal{A} \ \mathcal{A} \in \mathcal{A} \times \mathcal{A} \end{array}$

$\frac{d\phi}{dt} \geq \frac{d\phi}{dt}$

$\mathcal{A}(\mathcal{C})$

$\tau_{\rm{max}}$

$\sim e^{-\frac{1}{2}}$

$\sim e^{-\beta}$

$\frac{1}{\hat{\bm{v}}}$

$\frac{1}{2}$

$\big\langle$

$\frac{d}{dt}$

$\overline{ }$

$\hat{\mathcal{X}}$

Share This Order

Case History of Orders

Order(12) - 5 Jul 2023

Final Order

Click to view

Order(13) - 5 Jul 2023

Final Order

Click to view

Order(14) - 5 Jul 2023

Final Order

Click to view

Order(11) - 19 Jun 2023

Interim Order

Click to view

Order(10) - 11 May 2023

Interim Order

Click to view

Order(9) - 8 May 2023

Interim Order

Click to view

Order(8) - 5 May 2023

Interim Order

Click to view

Order(7) - 28 Apr 2023

Interim Order

Click to view

Order(6) - 26 Apr 2023

Interim Order

Click to view

Order(4) - 5 Jan 2023

Interim Order

Click to view

Order(5) - 5 Jan 2023

Interim Order

Click to view

Order(2) - 6 Sept 2022

Interim Order

Click to view

Order(3) - 6 Sept 2022

Interim Order

Viewing

Order(1) - 1 Oct 2020

Interim Order

Click to view