Pinjari Musum Vali vs. State Of Andhra Pradesh
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
For Extension Of Interim Orders
Before:
Hon'ble J K Maheshwari
Listed On:
1 Oct 2020
Original Order Copy
Get a certified copy of this order
Order Text
IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI
TUESDAY. THE SIXTH DAY OF SEPTEMBER, TWO THOUSAND AND TWENTY TWO :PRESENT:
THE HONOURABLE SRI JUSTICE SRI K SREENIVASA REDDY
CRIMINAL PETITION NO: 6362 OF 2019
Between:
-
- Pinjari Musum Vali, S/o Pinjari China Modin, D.No.77-112-A1, Chinthalamuni Nagar, Kallur Estate, Kurnool-518003, A1, Chinthalamuni Nagar, Kallur Estate, Kurnool-518003.
-
- Pilli Ratnakar, S/o Pitchireddy, D.No. 45/142-26-E-11-c-4, Veenus Nagar, Near VR Raithu Bazar, Kurnool-518003, Administrator, M/s. Narmada Sagar Agri Seeds Pvt. Ltd, D.No. 77-112-A1, Chinthalamuni Nagar, Kallur Estate, Kurnool-518003
$\mathcal{M} = \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left{ \begin{array}{c} \mathcal{M} \ \mathcal{M} \end{array} \right} \cup \left$ Petitioners/Accused Nos.(A1 & A2) AND
$\mathcal{L} \in \mathcal{P}_\mathcal{L} \times \mathcal{X}$
-
- State of Andhra Pradesh, Represented by Public Prosecutor High Court of A.P, Amaravati. Through inspector of police, Kothapet P.S, Guntur.
-
- Kundeti Venkata Srinivasarao, S/o Krishnarao, Asst Director $\mathsf{of}$ Agriculture, (Regular) Guntur Sub-Division, Guntur. (De-facto Complainant) $\mathbf{1} \cdot \mathbf{1} = \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1}$ .....Respondents
Petition under Section 482 of Cr.P.C, praying that in the circumstances stated in the memo of grounds filed herein, the High Court may be pleased to Quash C.C.No.644 / 2018 in (Cr.No. 239 of 2018 of Kothapet P.S. Guntur Urban) on the file of IV Addl. Junior Civil Judge, Guntur filed against the petitioners for the offences U/S 420 I.P.C., Sec 15 of Environment (Protection Act) and Sec. 6,7,21 and 23 of the Seeds Act.
IA NO: 1 OF 2019:
Petition under Section 482 of Cr.PC, praying that in the circumstances stated in the memo of grounds filed in Cripperthe High Court may be pleased to stay all further proceedings in C.C.No.644 of 2018 on the file of IV Addl. Junior Civil Judge Guntur including the appearance of the petitioners (A1 and A2), pending disposal of CRLP No. 6362 of 2019, on the file of the High Court.
The petition coming on for hearing, upon perusing the petition and memorandum of grounds filed therein and Orders of High Court dated 12-12-2019, 20-01-2020, 05-02-2020 & 01.10.2020 made herein and upon hearing the arguments of Sri M Chalapati Rao, Advocate for the Petitioners, and of Public Prosecutor for Respondent No.1, the Court made the following
${1,2}\cup{1,3}$ $\mathcal{D}(\mathcal{M})\subseteq \mathcal{M}$ "我是我答 $\mathcal{P}^{\text{max}}{\text{max}}\in E^{\text{max}}{\text{max}}$ $\mathcal{L} = \left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} \mathcal{L} \left(\frac{1}{\sqrt{2}}\right) \mathcal{L}$
ORDER:
"Interim order granted earlier is extended for a period of eight weeks. Post after six weeks."
Sd/- V. SATYA NARAYANA DEPUTY REGISTRAR
For ASSISTANT REGISTRAR
$\bar{\phantom{a}}$
ĩ
//TRUE COPY//
To,
-
- The IV Additional Junior Civil Judge, Guntur
-
- The Station House Officer, Kothapet Police Station, Guntur, Guntur District
$\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-\frac{1}{2}\sum_{i=1}^n\frac{1}{n}e^{-$
-
- Two CCs to Public Prosecutor, High Court of A.P., at Amaravati (OUT)
-
- One CC to Sri. M Chalapati Rao Advocate [OPUC]
-
- One spare copy
psk
HIGH COURT
$\frac{1}{3}$ $\hat{\mathcal{X}}$ $\frac{1}{\sqrt{2}}$
SRK,J
$\hat{\mathcal{A}}$
$\mathcal{Y}$
$\hat{E}^{\dagger}$
$\mathcal{L}$
DATED: 06-09-2022
NOTE : POST AFTER SIX WEEKS
ORDER
CRLP.No.6362 of 2019
EXTENSION OF INTERIM ORDER
$\overline{a}$
$\omega_{\rm{max}} \sim 10^{-3}$ $\sim$ $\mathcal{C}_{\mathcal{A},\mathcal{A}}$ $\mathcal{A} \in \mathcal{A}$
$\mathbb{E}[\mathbb{E}[\mathcal{M}\infty)]$ $| \hat{u} |{L^2(\mathbb{R}^2)} \leq \frac{1}{2} | \hat{v} - \hat{v} |_{L^2(\mathbb{R}^2)}$
$\mathcal{L}{\mathcal{A}} \in \mathbb{R}^{N \times 1}$ $\mathcal{P}{\text{max}}(\mathcal{A}) \geq \mathcal{P}_{\text{max}}(\mathcal{A})$
$\mathcal{O}(\frac{1}{\log n})^{\frac{1}{2} \log n} \mathcal{O}(\frac{1}{\log n})$ $\pi_{\mathcal{C}}^{\mathcal{C}}\to \mathcal{C}^{\mathcal{C}}\to \mathcal{N}^{\mathcal{C}}$ $\gamma \sim \langle \zeta_1 \zeta_2 \rangle_{\rm c}$
$\label{eq:1} \begin{aligned} \mathcal{L} = \begin{bmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{bmatrix} \ \mathcal{L} = \begin{bmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \end{bmatrix} \end{aligned}$
$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$
$\frac{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})} = \frac{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}{\partial \mathcal{L}{\mathcal{A}}(\mathcal{A})}$
${ \alpha_{i} }_{i=1}^{n}$
$\mathcal{O} \sim \mathbb{R}^{3 \times 1}$ $\frac{1}{\log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log $
$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$
$\mathcal{L} = \frac{1}{2} \mathcal{L}$ $\mathcal{N} = \mathcal{N} \times \mathcal{N}$
$\sim \sim 600$
$\mathcal{F}{\mathcal{C}}$ $\mathcal{A}(\mathcal{F},\mathcal{F})$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\gamma{\rm{max}}=1$
$\mathcal{L}_{\mathcal{L}}$
$\gamma_{\rm{eff}} = 1.5$
$\pi_{\mathcal{A}}^{\mathcal{A}}$
$\mathcal{L}(\mathcal{M}) = \mathcal{M}(\mathcal{M})$ $\varphi^{(1)}{\alpha\beta\gamma}(\omega)$ $\mathcal{V}{\mathcal{A}}$ $\tau_{\rm in} = \tau_{\rm in}$
$\begin{array}{c} \mathcal{A} \in \mathcal{A} \ \mathcal{A} \in \mathcal{A} \ \mathcal{A} \in \mathcal{A} \times \mathcal{A} \end{array}$
$\frac{d\phi}{dt} \geq \frac{d\phi}{dt}$
$\mathcal{A}(\mathcal{C})$
$\tau_{\rm{max}}$
$\sim e^{-\frac{1}{2}}$
$\sim e^{-\beta}$
$\frac{1}{\hat{\bm{v}}}$
$\frac{1}{2}$
$\big\langle$
$\frac{d}{dt}$
$\overline{ }$
$\hat{\mathcal{X}}$