The State Of Andhra Pradesh vs. Dr. C.K. Ramesh Kumar

Court:High Court of Andhra Pradesh
Judge:Hon'ble Venkata Jyothirmai Pratapa
Case Status:Withdrawn
Order Date:25 Jul 2022
CNR:APHC010334862022

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

For Admission

Before:

Hon'ble Ninala Jayasurya

Listed On:

25 Jul 2022

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

(SHOW CAUSE NÓTICE BEFORE ADMISSION) IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI MONDAY, THE TWENTY FIFTH DAY OF JULY TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRI JUSTICE NINALA JAYASURYA CRIMINAL PETITION NO: 5482 OF 2022

Between:

The State of Andhra Pradesh, Rep. By its Spl. Public Prosecutor, Through Dy. Supdt. Of Police, Anti-Corruption Bureau, CIU, AP., Vijayawada.

AND

SEWAS

.. Petitioner

सत्यमेव

Dr. C.K. Ramesh Kumar, S/o. Sri C. Krishnappa, Rio. Flat No.112, Cross Winds Apartments, Near Alilava Siva Temple, Tirupathi Rural Mandal, Chittoor District

... Respondent

$\mathbb{N}$

$\vec{33}$

$\mathbb{I}^{\dagger}$

$\Lambda$

$\nu$ Erilly: AW PRICE

$\mathcal{G} \subseteq \mathcal{G} \times \mathcal{G}$ $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L})$

WHEREAS the Petitioner above named through his Advocate Sri A GAYATHRI REDDY presented this Petition under Section 482 of Cr.P.C, praying that the High Court may be pleased to set aside the Order dated 27.04.2022 passed in Crl.M.P. No.56 of 2021 in Cr. No. 04/RCO CIU-ACB/2020 on the file of the Court of the Special Judge for SPE and ACB Cases -cum- Additional Metropolitan Sessions Judge, Vijayawada and consequently direct the respondent/ Accused to furnish his sample signatures/writings before the Hon'ble Court of the Special Judge for SPE and ACB Cases, Vijayawada.

AND WHEREAS the High Court upon perusing the petition and memorandum of grounds filed herein and upon hearing the arguments of Sri A GAYATHRI REDDY Advocate for the Petitioner, directed issue of notice to the Respondents herein to show cause as to why this CRIMINAL PETITION should not be admitted.

$\mathcal{A} \in \mathcal{A} \cup \mathcal{A}$

Ka Charloph $\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\neq\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}_{\mathcal$

$\mathbb{H}^2$

$\mathfrak{P} \subseteq \mathcal{A} \subseteq$

$\psi(\xi) = \psi(\xi)$

You viz:

Dr. C.K. Ramesh Kumar, S/o. Sri C. Krishnappa, Rio. Flat No.112, Cross Winds Apartments, Near Alilava Siva Temple, Tirupathi Rural Mandal, Chittoor District

are be and hereby directed to show cause either appearing in person or through an Advocate, as to why in the circumstances set out in the petition and the affidavit filed therewith (copy enclosed) this CRIMINAL PETITION should not be admitted. $\mathcal{L}_{\mathcal{M}}(\mathcal{M},\mathcal{M})$

The Court made the following: ORDER:

"Heard the learned counsel for the petitioner.

Issue notice to the respondent returnable in four weeks.

Learned counsel for the petitioner is permitted to take out personal notice on the respondent by registered post with acknowledgement due and file proof of service-in the respondent by register of adjournment.<br>Registry by the next date of adjournment.

F

$\mathcal{L} = \mathcal{L} + \mathcal{L}$ //TRUE COPY// $\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$

$\langle \mathcal{L} \rangle$ $\mathcal{F}^{\text{max}}{\text{max}}\left(\mathcal{F}^{\text{max}}{\text{max}}\right)$ $\mathcal{L}{\mathcal{M}} \leftarrow \mathcal{L}{\mathcal{M}}$

List the matter after six weeks."

Sd/- P. VINOD KUMAR ASSISTANT REGISTRAR

SECTION OFFICER

$\zeta_{\xi}$

$\mathfrak{F}$

To, 1. Dr. C.K. Ramesh Kumar, S/o. Sri C. Krishnappa, R/o. Flat No.112, Cross Winds Apartments, Near Alilava Siva Temple, Tirupathi Rural Mandal, Chittoor District (by RPAD- along with a copy of petition and memorandum of grounds) One CC to SRI. A GAYATHRI REDDY Advocate [OPUC] One spare copy $\frac{1}{4},$ $\mathcal{L} \in \mathbb{R}^{n \times n}$ $\mathop{\text{\rm pr}}\nolimits$ $\mathcal{W} \neq \mathcal{W}^{\mathcal{X}}{\mathcal{X}} \text{ and }$ $\phi^{\dagger}{\gamma\delta}$ $\hat{\mathcal{A}}$ $\tilde{\mathbb{R}}$ $\overline{a}$ $\tilde{\tilde{g}}i)$ $\frac{4}{3} \left( \frac{1}{3} \right)^2$ $\frac{1}{1+\epsilon}$ $\tau{\rm{eff}}$ $\phi_4\psi_1\phi_2\phi$ $\frac{d\mathbf{r}}{d\mathbf{r}} = \frac{1}{2} \frac{\mathbf{r} \cdot \mathbf{r}}{d\mathbf{r}} \frac{\mathbf{r}}{d\mathbf{r}}$ $\mathcal{L}^{\mathcal{L}}$ $\mathbb{R}^{\mathbb{Z}^n} \times \mathbb{R}$ $\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb$ $\mathbb{R}^{\mathbb{N}}$ THOUR $\begin{array}{c} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \ \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \end{array}$ $\frac{1}{\beta} \left( \frac{1}{\beta} \right) \left( \frac{1}{\beta} \right) \frac{1}{\beta}$ $\frac{d\theta}{d\theta} = \frac{d\theta}{d\theta}$ $\mathbb{E} \big( \mathsf{SNR} \big) \geq \mathbb{E} \big( \mathsf{S} \big)$ $\frac{1}{2},,$ $\mathbb{P}{\mathcal{E}} = \bigcup{k=1}^{\infty} \frac{1}{k^2}$ $\mathcal{A}^{\mathcal{A}}$ $\hat{\mathcal{A}}i$ $\phi(\delta{\lambda,\lambda}^{\alpha})$ $\overline{ }$ $\gamma_{\tau_{\rm{min}}^{\rm{C}}}$ i j $\hat{\mathcal{F}}$ $\overline{1}$ $\frac{1}{2}$ $\frac{d^2}{dt}$ $\begin{array}{c} \mathcal{L} = \mathcal{L} \times \mathcal{L} \ \mathcal{L} = \mathcal{L} \times \mathcal{L} \ \mathcal{L} = \mathcal{L} \times \mathcal{L} \times \mathcal{L} \ \mathcal{L} = \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{$ $\hat{\sigma}{\bullet}$ $\left\langle \cdot \right\rangle$ $\mathcal{L}{\mathcal{A}}$ $\hat{\gamma}{\mu}$ $\boldsymbol{u}{\left(\tilde{\lambda}\right)}$ $\sim$ $\hat{\tau}_i$ $\mathcal{Z}^{(1,\infty,\infty)}$ $\frac{1}{\sqrt{2}}$ $\overline{a}$ $\hat{\tau}_i$ $\tilde{E}^{\theta}_i$ $\bar{\bar{t}}$ $\hat{\phi}_i$

$\frac{1}{\sqrt{2}}$ $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ $\hat{\mathbf{z}}$

$\frac{1}{\sqrt{2}}$ $\mathcal{L}^{\text{max}}{\text{max}}(x) = \mathcal{L}^{\text{max}}{\text{max}}(x)$

$\frac{1}{\sqrt{2}}$ $\frac{1}{2}$

HIGH COURT

NJS,J

$\mathcal{L}(\mathcal{M})$

$\mathcal{H}^{\mathcal{A}}$

$\mathbb{R}^{\mathbb{N}}$

$\frac{1}{2}$

$\cdot \cdot \cdot$

$\frac{1}{4}$

$\frac{5}{2}$

$\mathcal{A} = \mathcal{A}$

4

DATED: 25/07/2022

LIST THE MATTER AFTER SIX WEEKS.

$\epsilon^{-1/2} \mathbb{X}$

$\mathcal{E}^{\ast} = -\mathbb{C}$ $\begin{array}{cc} \mathcal{C}_1 & \mathcal{C}_2 \ \mathcal{C}_3 & \mathcal{C}_3 \ \mathcal{C}_3 & \mathcal{C}_3 \ \mathcal{C}_3 & \mathcal{C}_3 \end{array}$

$\lim_{n\to\infty}\frac{1}{n}\frac{2\pi n}{n}=\frac{1}{n}$ $\mathbf{X}_{\mathbf{z}}$

$\mathcal{L} = \mathcal{L} \mathcal{L}$

$\mathcal{L}_{\mathcal{A},\mathcal{A}}$

$\frac{1}{\sqrt{2}}\sum_{i=1}^N\frac{1}{\alpha_i}$

$\big{$

$\mathbb{E}(\mathcal{L}^{(1,1)})$

$\mathbb{E}[\mathbb{Q}(\mathbb{S}^1)] \to \mathbb{C}$ $\mathcal{L}_{\mathcal{L}}$

$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

$\left[\begin{smallmatrix} x_1 & x_2 & 0 \ 0 & x_2 & 0 \ 0 & 0 & 0 \end{smallmatrix}\right]$

$\begin{array}{c} \begin{array}{c} \text{and} \ \text{and} \end{array} \ \begin{array}{c} \text{and} \ \text{and} \end{array} \ \begin{array}{c} \text{and} \ \text{and} \end{array} \end{array}$

$\mathcal{L}^{\mathcal{L}}$

家家 医恶

$\mathcal{L} = \mathcal{L} \mathcal{L}^{(1)}$

$\overline{a}$

$\mathcal{L} = \mathcal{L}$

NOTICE BEFORE ADMISSION

CRLP.No.5482 of 2022

Share This Order

Case History of Orders

Order(6) - 21 Jan 2025

Final Order

Click to view

Order(7) - 21 Jan 2025

Final Order

Click to view

Order(5) - 20 Jan 2025

Interim Order

Click to view

Order(4) - 31 Dec 2024

Interim Order

Click to view

Order(3) - 24 Dec 2024

Interim Order

Click to view

Order(1) - 25 Jul 2022

Interim Order

Click to view

Order(2) - 25 Jul 2022

Interim Order

Viewing