The State Of Andhra Pradesh vs. Dr. C.K. Ramesh Kumar
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
For Admission
Before:
Hon'ble Ninala Jayasurya
Listed On:
25 Jul 2022
Original Order Copy
Get a certified copy of this order
Order Text
(SHOW CAUSE NÓTICE BEFORE ADMISSION) IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI MONDAY, THE TWENTY FIFTH DAY OF JULY TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRI JUSTICE NINALA JAYASURYA CRIMINAL PETITION NO: 5482 OF 2022
Between:
The State of Andhra Pradesh, Rep. By its Spl. Public Prosecutor, Through Dy. Supdt. Of Police, Anti-Corruption Bureau, CIU, AP., Vijayawada.
AND
SEWAS
.. Petitioner
सत्यमेव
Dr. C.K. Ramesh Kumar, S/o. Sri C. Krishnappa, Rio. Flat No.112, Cross Winds Apartments, Near Alilava Siva Temple, Tirupathi Rural Mandal, Chittoor District
... Respondent
$\mathbb{N}$
$\vec{33}$
$\mathbb{I}^{\dagger}$
$\Lambda$
$\nu$ Erilly: AW PRICE
$\mathcal{G} \subseteq \mathcal{G} \times \mathcal{G}$ $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L})$
WHEREAS the Petitioner above named through his Advocate Sri A GAYATHRI REDDY presented this Petition under Section 482 of Cr.P.C, praying that the High Court may be pleased to set aside the Order dated 27.04.2022 passed in Crl.M.P. No.56 of 2021 in Cr. No. 04/RCO CIU-ACB/2020 on the file of the Court of the Special Judge for SPE and ACB Cases -cum- Additional Metropolitan Sessions Judge, Vijayawada and consequently direct the respondent/ Accused to furnish his sample signatures/writings before the Hon'ble Court of the Special Judge for SPE and ACB Cases, Vijayawada.
AND WHEREAS the High Court upon perusing the petition and memorandum of grounds filed herein and upon hearing the arguments of Sri A GAYATHRI REDDY Advocate for the Petitioner, directed issue of notice to the Respondents herein to show cause as to why this CRIMINAL PETITION should not be admitted.
$\mathcal{A} \in \mathcal{A} \cup \mathcal{A}$
Ka Charloph $\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\neq\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\mathcal{L}^{\mathcal{L}}_{\mathcal$
$\mathbb{H}^2$
$\mathfrak{P} \subseteq \mathcal{A} \subseteq$
$\psi(\xi) = \psi(\xi)$
You viz:
Dr. C.K. Ramesh Kumar, S/o. Sri C. Krishnappa, Rio. Flat No.112, Cross Winds Apartments, Near Alilava Siva Temple, Tirupathi Rural Mandal, Chittoor District
are be and hereby directed to show cause either appearing in person or through an Advocate, as to why in the circumstances set out in the petition and the affidavit filed therewith (copy enclosed) this CRIMINAL PETITION should not be admitted. $\mathcal{L}_{\mathcal{M}}(\mathcal{M},\mathcal{M})$
The Court made the following: ORDER:
"Heard the learned counsel for the petitioner.
Issue notice to the respondent returnable in four weeks.
Learned counsel for the petitioner is permitted to take out personal notice on the respondent by registered post with acknowledgement due and file proof of service-in the respondent by register of adjournment.<br>Registry by the next date of adjournment.
F
$\mathcal{L} = \mathcal{L} + \mathcal{L}$ //TRUE COPY// $\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$
$\langle \mathcal{L} \rangle$ $\mathcal{F}^{\text{max}}{\text{max}}\left(\mathcal{F}^{\text{max}}{\text{max}}\right)$ $\mathcal{L}{\mathcal{M}} \leftarrow \mathcal{L}{\mathcal{M}}$
List the matter after six weeks."
Sd/- P. VINOD KUMAR ASSISTANT REGISTRAR
SECTION OFFICER
$\zeta_{\xi}$
$\mathfrak{F}$
To, 1. Dr. C.K. Ramesh Kumar, S/o. Sri C. Krishnappa, R/o. Flat No.112, Cross Winds Apartments, Near Alilava Siva Temple, Tirupathi Rural Mandal, Chittoor District (by RPAD- along with a copy of petition and memorandum of grounds) One CC to SRI. A GAYATHRI REDDY Advocate [OPUC] One spare copy $\frac{1}{4},$ $\mathcal{L} \in \mathbb{R}^{n \times n}$ $\mathop{\text{\rm pr}}\nolimits$ $\mathcal{W} \neq \mathcal{W}^{\mathcal{X}}{\mathcal{X}} \text{ and }$ $\phi^{\dagger}{\gamma\delta}$ $\hat{\mathcal{A}}$ $\tilde{\mathbb{R}}$ $\overline{a}$ $\tilde{\tilde{g}}i)$ $\frac{4}{3} \left( \frac{1}{3} \right)^2$ $\frac{1}{1+\epsilon}$ $\tau{\rm{eff}}$ $\phi_4\psi_1\phi_2\phi$ $\frac{d\mathbf{r}}{d\mathbf{r}} = \frac{1}{2} \frac{\mathbf{r} \cdot \mathbf{r}}{d\mathbf{r}} \frac{\mathbf{r}}{d\mathbf{r}}$ $\mathcal{L}^{\mathcal{L}}$ $\mathbb{R}^{\mathbb{Z}^n} \times \mathbb{R}$ $\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb{P}^{\mathbb$ $\mathbb{R}^{\mathbb{N}}$ THOUR $\begin{array}{c} \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \ \mathcal{L}{\text{max}}(x) = \mathcal{L}{\text{max}}(x) \end{array}$ $\frac{1}{\beta} \left( \frac{1}{\beta} \right) \left( \frac{1}{\beta} \right) \frac{1}{\beta}$ $\frac{d\theta}{d\theta} = \frac{d\theta}{d\theta}$ $\mathbb{E} \big( \mathsf{SNR} \big) \geq \mathbb{E} \big( \mathsf{S} \big)$ $\frac{1}{2},,$ $\mathbb{P}{\mathcal{E}} = \bigcup{k=1}^{\infty} \frac{1}{k^2}$ $\mathcal{A}^{\mathcal{A}}$ $\hat{\mathcal{A}}i$ $\phi(\delta{\lambda,\lambda}^{\alpha})$ $\overline{ }$ $\gamma_{\tau_{\rm{min}}^{\rm{C}}}$ i j $\hat{\mathcal{F}}$ $\overline{1}$ $\frac{1}{2}$ $\frac{d^2}{dt}$ $\begin{array}{c} \mathcal{L} = \mathcal{L} \times \mathcal{L} \ \mathcal{L} = \mathcal{L} \times \mathcal{L} \ \mathcal{L} = \mathcal{L} \times \mathcal{L} \times \mathcal{L} \ \mathcal{L} = \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{L} \times \mathcal{$ $\hat{\sigma}{\bullet}$ $\left\langle \cdot \right\rangle$ $\mathcal{L}{\mathcal{A}}$ $\hat{\gamma}{\mu}$ $\boldsymbol{u}{\left(\tilde{\lambda}\right)}$ $\sim$ $\hat{\tau}_i$ $\mathcal{Z}^{(1,\infty,\infty)}$ $\frac{1}{\sqrt{2}}$ $\overline{a}$ $\hat{\tau}_i$ $\tilde{E}^{\theta}_i$ $\bar{\bar{t}}$ $\hat{\phi}_i$
$\frac{1}{\sqrt{2}}$ $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ $\hat{\mathbf{z}}$
$\frac{1}{\sqrt{2}}$ $\mathcal{L}^{\text{max}}{\text{max}}(x) = \mathcal{L}^{\text{max}}{\text{max}}(x)$
$\frac{1}{\sqrt{2}}$ $\frac{1}{2}$
HIGH COURT
NJS,J
$\mathcal{L}(\mathcal{M})$
$\mathcal{H}^{\mathcal{A}}$
$\mathbb{R}^{\mathbb{N}}$
$\frac{1}{2}$
$\cdot \cdot \cdot$
$\frac{1}{4}$
$\frac{5}{2}$
$\mathcal{A} = \mathcal{A}$
4
DATED: 25/07/2022
LIST THE MATTER AFTER SIX WEEKS.
$\epsilon^{-1/2} \mathbb{X}$
$\mathcal{E}^{\ast} = -\mathbb{C}$ $\begin{array}{cc} \mathcal{C}_1 & \mathcal{C}_2 \ \mathcal{C}_3 & \mathcal{C}_3 \ \mathcal{C}_3 & \mathcal{C}_3 \ \mathcal{C}_3 & \mathcal{C}_3 \end{array}$
$\lim_{n\to\infty}\frac{1}{n}\frac{2\pi n}{n}=\frac{1}{n}$ $\mathbf{X}_{\mathbf{z}}$
$\mathcal{L} = \mathcal{L} \mathcal{L}$
$\mathcal{L}_{\mathcal{A},\mathcal{A}}$
$\frac{1}{\sqrt{2}}\sum_{i=1}^N\frac{1}{\alpha_i}$
$\big{$
$\mathbb{E}(\mathcal{L}^{(1,1)})$
$\mathbb{E}[\mathbb{Q}(\mathbb{S}^1)] \to \mathbb{C}$ $\mathcal{L}_{\mathcal{L}}$
$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$
$\left[\begin{smallmatrix} x_1 & x_2 & 0 \ 0 & x_2 & 0 \ 0 & 0 & 0 \end{smallmatrix}\right]$
$\begin{array}{c} \begin{array}{c} \text{and} \ \text{and} \end{array} \ \begin{array}{c} \text{and} \ \text{and} \end{array} \ \begin{array}{c} \text{and} \ \text{and} \end{array} \end{array}$
$\mathcal{L}^{\mathcal{L}}$
家家 医恶
$\mathcal{L} = \mathcal{L} \mathcal{L}^{(1)}$
$\overline{a}$
$\mathcal{L} = \mathcal{L}$
NOTICE BEFORE ADMISSION
CRLP.No.5482 of 2022