Bharath Sanchar Nigam Limited (Bsnl) vs. Allu Nookaratnam

Court:High Court of Andhra Pradesh
Judge:Hon'ble Subba Reddy Satti
Case Status:Dismissed
Order Date:28 Apr 2022
CNR:APHC010168692022

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Disposed

Before:

Hon'ble M.Ganga Rao

Listed On:

28 Apr 2022

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI

THURSDAY, THE TWENTY EIGHTH DAY OF APRIL TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRIJUSTICE M.GANGA RAO IA.NO.3 OF 2022 $\mathbb{I}^{\mathbb{N}}$

CMA. NO: 115 OF 2022

$\mathbb{R}^{\frac{n-1}{2}}\mathbb{R}^{\frac{n-1}{2}}\mathbb{R}$

Between:

Bharath Sanchar Nigam Limited (BSNL), Represented by the General Manager, Presently represented by Smt K Nayeemunnisa Begum AGM(Legal), O/o GMTD BSNL, Visakhapatnam-20.

.... Appellant/Respondent

AND

$\mathcal{L}_{\text{dust}}$

$\mathcal{L}$ The Register

Smt. Allu Nookaratnam, W/o. Late Allu Bapayya, Opp- Cooperative Bank, Nagulaapally (v), Munagapaka (M), Visakhapatnam.

... Respondent/Appellant

Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to stay all further proceedings in W.C.No.1 of 2017 on the file of the Commissioner for Workmen's Compensation and Joint Commissioner of Labour, Visakhapatnam, pending disposal of CMA No. 115 of 2022, on the file of the High Court.

The petition coming on for hearing and upon perusing the petition and memorandum of grounds filed herein and upon hearing the arguments of Sri P BHASKAR Advocate for the Petitioner, Advocate, the court made the following Order.

The Court made the following: ORDER:

"For the reasons stated in the accompanying affidavit and the grounds raised in appeal, there shall be interim stay as prayed for.

$\mathcal{F} = \mathcal{F} \mathcal{F} = \mathcal{F} \mathcal{F}$

$\sim$ $\mathcal{C}(\mathbb{C})$ $\mathbb{R}^{\mathbb{N}}$

$\mathcal{N} \in \mathbb{R}^d$ Stated $\mathcal{L} \mathcal{L}$ $\mathcal{L}(\mathbb{R})$ $\mathcal{C}^{\text{max}}{\text{max}}$ $\mathcal{M}^{\mathcal{A}}{\mathcal{A}}$

The respondent is permitted to withdraw 50% of the awarded amount along with accrued interest, without furnishing any security."

$\mathcal{L}^{\mathcal{L}}$

$\mathbb{S}^{\mathbb{N}0}{\mathbb{R}^2}$

$\mathcal{L} \subset \mathcal{L}$ $\mathcal{A}^{\mathcal{A}}{\mathcal{A}}\mathcal{A}^{\mathcal{A}}{\mathcal{A}}$

等。新 IITRUE COPYII

$\mathbb{C}^n(\mathbb{R}^n)^{\mathbb{Z}^n}$ $\mathcal{L}(\mathcal{L})$ $\mathbb{R}^2_{\text{max}}$ $\mathcal{M}(\mathcal{M})$

For ASSISTANT REGISTRAR

Sd/-M.NAVEEN CHANDRA

ASSISTANT REGISTRAR

To,

  1. The Commissioner for Workmen's Compensation and Joint Commissioner of Labour, Visakhapatnam. $\mathbb{F}_{\mathcal{R}}^{n+1}$

$\ker \xi_1^{\ell-1}$ $\mathcal{L}^{\text{max}}{\text{max}}(\mathcal{L}^{\text{max}}{\text{max}})$

$\mathcal{R}(\mathcal{L})$

$\mathcal{L}{\mathcal{N}}^{(1)}\mathcal{L}{\mathcal{N}}^{(1)}$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\mathbb{R}^{2n}$ $\mathbb{P}[\gamma_k^{(p)}]q^{(p)}$ $\text{or} \mathcal{R}^{\bullet}$ $\mathcal{L}(\mathcal{E}{\mathcal{A}})$ $\mathbb{P}^{\frac{1}{2}}$ $3.55$ $\mathbb{C}^{\mathbb{C}}{\geq 0}(\mathbb{R}^d)$ $\frac{B}{\mathcal{M}{\mathrm{eff}}}\frac{1}{\omega}$ $\gamma_{\alpha} \stackrel{\alpha}{\rightarrow} \gamma_{\beta}$ $\mathcal{L}(\mathcal{L})$ $\mathbb{R}^n$

$\mathcal{A}^{\mathcal{A}}$ $\mathcal{L}{\mathcal{L}}$ $\mathcal{H}^{(k)}$ $\frac{1}{\sqrt{2}}\sum{i=1}^{\infty} \frac{1}{\sqrt{2}}$ $\begin{smallmatrix}&&1\1&&&4\2&&&4\end{smallmatrix}$ $x^{\frac{1}{2}}\left(x^{\frac{1}{2}}\right)^{\frac{1}{2}}$ $\mathbb{R}^{\mathbb{Z}^{\mathbb{Z}}}$

$\frac{d^2\mathcal{L}}{d\mathcal{L}}$ $\mathbb{R}^{\mathbb{N}}\mathbb{V}$ $\frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$

$\begin{smallmatrix}&&&1\&&&1\&&&2\&&&3\&&&3\end{smallmatrix}$

$\mathbb{V}^{1,1}_{\mathbb{Z}^n}$

$\overline{\mathcal{M}}$

$\mathcal{S} \leftarrow \mathcal{S}$

$\mathcal{L}_{\mathcal{H}^{(1)}}$

$\mathcal{C} = \mathcal{C}$ $\mathcal{M}^{\mathcal{A}}$

    1. Smt. Allu Nookaratnam,, W/o. Late Allu Bapayya, Opp- Cooperative Bank, Nagulaapally (v), Munagapaka (M), Visakhapatnam (by RPAD- along with a copy of petition and memorandum of grounds)
    1. One CC to SRI. P BHASKAR Advocate [OPUC]
    1. One spare copy

HIGH COURT

MGRJ

DATED: 28/04/2022

$\mathbb{F}_2\left(\mathbb{G}\right)$ $\mathbb{C}^{n-1}$

$\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)^{-1}$ $\mathcal{L} \in \mathcal{L}$

$\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}$

$\mathcal{L}^{\text{max}}$

$\mathcal{L}^{(n)}_{\mathcal{A}_n}$

$\frac{1}{\sqrt{2}}$

$\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$

$\mathbb{R}^{K_{\mathbb{R}}^{\times}}$

$\mathbb{R}^{(N)}$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

$\mathcal{R}^{(1)}_i$ $\mathcal{L} = \begin{pmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{$

$\frac{1}{\alpha} \left( \frac{k}{\alpha} \right)$

$\sim 5%$ $\mathcal{L} = \frac{1}{2} \left( \frac{\mathcal{L}}{\mathcal{L}} \right)^{\frac{1}{2}}$ $\mathcal{C}\mathcal{A} = \mathcal{C}\mathcal{A}$ Section

$\frac{1}{\sqrt{2}}$

LIST ON 23.06.2022

$\blacksquare$

$\frac{1}{\sqrt{2}}$ $\mathbf{v}^{\dagger}$

$\hat{\gamma}_\text{S}$

$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

IA.NO.3 OF 2022 IN CMA.No.115 of 2022

DIRECTION

Share This Order

Case History of Orders

Order(6) - 26 Sept 2022

Final Order

Click to view

Order(5) - 18 Jul 2022

Interim Order

Click to view

Order(4) - 4 Jul 2022

Interim Order

Click to view

Order(2) - 28 Apr 2022

Interim Order

Click to view

Order(3) - 28 Apr 2022

Interim Order

Viewing

Order(1) - 19 Apr 2022

Interim Order

Click to view