Bharath Sanchar Nigam Limited (Bsnl) vs. Allu Nookaratnam
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
Disposed
Before:
Hon'ble M.Ganga Rao
Listed On:
28 Apr 2022
Original Order Copy
Get a certified copy of this order
Order Text
IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI
THURSDAY, THE TWENTY EIGHTH DAY OF APRIL TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRIJUSTICE M.GANGA RAO IA.NO.3 OF 2022 $\mathbb{I}^{\mathbb{N}}$
CMA. NO: 115 OF 2022
$\mathbb{R}^{\frac{n-1}{2}}\mathbb{R}^{\frac{n-1}{2}}\mathbb{R}$
Between:
Bharath Sanchar Nigam Limited (BSNL), Represented by the General Manager, Presently represented by Smt K Nayeemunnisa Begum AGM(Legal), O/o GMTD BSNL, Visakhapatnam-20.
.... Appellant/Respondent
AND
$\mathcal{L}_{\text{dust}}$
$\mathcal{L}$ The Register
Smt. Allu Nookaratnam, W/o. Late Allu Bapayya, Opp- Cooperative Bank, Nagulaapally (v), Munagapaka (M), Visakhapatnam.
... Respondent/Appellant
Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to stay all further proceedings in W.C.No.1 of 2017 on the file of the Commissioner for Workmen's Compensation and Joint Commissioner of Labour, Visakhapatnam, pending disposal of CMA No. 115 of 2022, on the file of the High Court.
The petition coming on for hearing and upon perusing the petition and memorandum of grounds filed herein and upon hearing the arguments of Sri P BHASKAR Advocate for the Petitioner, Advocate, the court made the following Order.
The Court made the following: ORDER:
"For the reasons stated in the accompanying affidavit and the grounds raised in appeal, there shall be interim stay as prayed for.
$\mathcal{F} = \mathcal{F} \mathcal{F} = \mathcal{F} \mathcal{F}$
$\sim$ $\mathcal{C}(\mathbb{C})$ $\mathbb{R}^{\mathbb{N}}$
$\mathcal{N} \in \mathbb{R}^d$ Stated $\mathcal{L} \mathcal{L}$ $\mathcal{L}(\mathbb{R})$ $\mathcal{C}^{\text{max}}{\text{max}}$ $\mathcal{M}^{\mathcal{A}}{\mathcal{A}}$
The respondent is permitted to withdraw 50% of the awarded amount along with accrued interest, without furnishing any security."
$\mathcal{L}^{\mathcal{L}}$
$\mathbb{S}^{\mathbb{N}0}{\mathbb{R}^2}$
$\mathcal{L} \subset \mathcal{L}$ $\mathcal{A}^{\mathcal{A}}{\mathcal{A}}\mathcal{A}^{\mathcal{A}}{\mathcal{A}}$
等。新 IITRUE COPYII
$\mathbb{C}^n(\mathbb{R}^n)^{\mathbb{Z}^n}$ $\mathcal{L}(\mathcal{L})$ $\mathbb{R}^2_{\text{max}}$ $\mathcal{M}(\mathcal{M})$
For ASSISTANT REGISTRAR
Sd/-M.NAVEEN CHANDRA
ASSISTANT REGISTRAR
To,
- The Commissioner for Workmen's Compensation and Joint Commissioner of Labour, Visakhapatnam. $\mathbb{F}_{\mathcal{R}}^{n+1}$
$\ker \xi_1^{\ell-1}$ $\mathcal{L}^{\text{max}}{\text{max}}(\mathcal{L}^{\text{max}}{\text{max}})$
$\mathcal{R}(\mathcal{L})$
$\mathcal{L}{\mathcal{N}}^{(1)}\mathcal{L}{\mathcal{N}}^{(1)}$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\mathbb{R}^{2n}$ $\mathbb{P}[\gamma_k^{(p)}]q^{(p)}$ $\text{or} \mathcal{R}^{\bullet}$ $\mathcal{L}(\mathcal{E}{\mathcal{A}})$ $\mathbb{P}^{\frac{1}{2}}$ $3.55$ $\mathbb{C}^{\mathbb{C}}{\geq 0}(\mathbb{R}^d)$ $\frac{B}{\mathcal{M}{\mathrm{eff}}}\frac{1}{\omega}$ $\gamma_{\alpha} \stackrel{\alpha}{\rightarrow} \gamma_{\beta}$ $\mathcal{L}(\mathcal{L})$ $\mathbb{R}^n$
$\mathcal{A}^{\mathcal{A}}$ $\mathcal{L}{\mathcal{L}}$ $\mathcal{H}^{(k)}$ $\frac{1}{\sqrt{2}}\sum{i=1}^{\infty} \frac{1}{\sqrt{2}}$ $\begin{smallmatrix}&&1\1&&&4\2&&&4\end{smallmatrix}$ $x^{\frac{1}{2}}\left(x^{\frac{1}{2}}\right)^{\frac{1}{2}}$ $\mathbb{R}^{\mathbb{Z}^{\mathbb{Z}}}$
$\frac{d^2\mathcal{L}}{d\mathcal{L}}$ $\mathbb{R}^{\mathbb{N}}\mathbb{V}$ $\frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$
$\begin{smallmatrix}&&&1\&&&1\&&&2\&&&3\&&&3\end{smallmatrix}$
$\mathbb{V}^{1,1}_{\mathbb{Z}^n}$
$\overline{\mathcal{M}}$
$\mathcal{S} \leftarrow \mathcal{S}$
$\mathcal{L}_{\mathcal{H}^{(1)}}$
$\mathcal{C} = \mathcal{C}$ $\mathcal{M}^{\mathcal{A}}$
-
- Smt. Allu Nookaratnam,, W/o. Late Allu Bapayya, Opp- Cooperative Bank, Nagulaapally (v), Munagapaka (M), Visakhapatnam (by RPAD- along with a copy of petition and memorandum of grounds)
-
- One CC to SRI. P BHASKAR Advocate [OPUC]
-
- One spare copy
HIGH COURT
MGRJ
DATED: 28/04/2022
$\mathbb{F}_2\left(\mathbb{G}\right)$ $\mathbb{C}^{n-1}$
$\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)^{-1}$ $\mathcal{L} \in \mathcal{L}$
$\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}$
$\mathcal{L}^{\text{max}}$
$\mathcal{L}^{(n)}_{\mathcal{A}_n}$
$\frac{1}{\sqrt{2}}$
$\mathcal{A}^{\mathcal{A}}_{\mathcal{A}}$
$\mathbb{R}^{K_{\mathbb{R}}^{\times}}$
$\mathbb{R}^{(N)}$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$
$\mathcal{R}^{(1)}_i$ $\mathcal{L} = \begin{pmatrix} \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{L} \ \mathcal{L} & \mathcal{$
$\frac{1}{\alpha} \left( \frac{k}{\alpha} \right)$
$\sim 5%$ $\mathcal{L} = \frac{1}{2} \left( \frac{\mathcal{L}}{\mathcal{L}} \right)^{\frac{1}{2}}$ $\mathcal{C}\mathcal{A} = \mathcal{C}\mathcal{A}$ Section
$\frac{1}{\sqrt{2}}$
LIST ON 23.06.2022
$\blacksquare$
$\frac{1}{\sqrt{2}}$ $\mathbf{v}^{\dagger}$
$\hat{\gamma}_\text{S}$
$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$
IA.NO.3 OF 2022 IN CMA.No.115 of 2022
DIRECTION