L.Sudhakar Naidu vs. State Of Andhra Pradesh

Court:High Court of Andhra Pradesh
Judge:Hon'ble Cheekati Manavendranath Roy
Case Status:Unknown Status
Order Date:15 Apr 2021
CNR:APHC010141962021

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission (Panchayat Raj)

Before:

Hon'ble Cheekati Manavendranath Roy

Listed On:

15 Apr 2021

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI

THURSDAY, THE FIFTEENTH DAY OF APRIL TWO THOUSAND AND TWENT

:PRESENT:

THE HONOURABLE SRI JUSTICE CHEEKATI MANAVENDRANATH ROY

IA Nos. 1 & 2 OF 2021 $\mathbf{IN}$ WP NO: 8042 OF 2021

Between:

    1. L.Sudhakar Naidu, s/o Late Muniswamy Naidu, aged 51 years, r/o D.No-1-35, K.Nasampalli Village, Kalijavedu Panchayat, Gangadhara Nellore Mandal, Chittoor District, Andhra Pradesh - 517 125.
    1. K.Yuvarajulu Naidu, s/o. Doraswamy Naidu, aged 48 years, r/o D.No-1-31, K.Nasampalli Village, Kalijavedu Panchayat, Gangadhara Nellore Mandal, Chittoor District, Andhra Pradesh - 517 125.

$\ldots$ Petitioners( in both the petitions) (Petitioners in WP 8042 OF 2021) on the file of High Court)

AND

    1. State of Andhra Pradesh, Rep. by its Principal Secretary, Panchayat Raj and Rural Development Department, Block No.5, A.P.Secretariat, Velagapudi, Amaravati - 522 238.
    1. The District Collector, Chitoor District, Old Collectorate Complex, Chittoor 517 $001$
    1. The District Panchayat Officer, Chitoor Revenue Old Collectorate Complex, Chittoor - 517 001
    1. The Kalijavedu Gram Panchayat, Rep by its Secretary, Kalijavedu, Gangadhara Nellore Mandal, Chittoor District.

...Respondents(in both the petitions)

(Respondents in-do-)

Counsel for the Petitioner: Smt.S.Pranathi (in both the petitions) Counsel for the Respondent Nos.1 to 3: GP for Panchayat Raj & Rural Development (in both the petitions)

Counsel for the Respondent No.4: Sri.Vinod K.Reddy (Standing Counsel) (in both the petitions)

I.A.No.1 of 2021

Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to direct the respondents to consider the representation dated 03.06.2021 submitted by the residents of K.Nasampalli, K.Nasampalli H.W., K.Nasampalli A.W., K. Nasampalli Venkatapuram, Bommavaripalli of Kalijavedu Gram Panchayat, S.T.Colony, Gangadhara Nellore Mandal, Chittoor District, pending disposal of Writ Petition No.8042 of 2021, on the file of the High Court.

I.A.No.2 of 2021

Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to stay the construction of Rythu Bharosa Kendram and Health Wellness centre, being undertaken at Kalijavedu Village, Gangadhara Nellore Mandal, Chittoor District, pending disposal of Writ Petition No.8042 of 2021, on the file of the High Court.

The court while directing issue of notice to the Respondents herein to show cause as to why these applications should not be complied with, made the following order. (The receipt of this order will be deemed to be the receipt of notice in the case). The Court made the following:

ORDER:

In the meanwhile, there shall be interim direction not to proceed with further process of construction of Rythu bharosa kendram and Health and Wellness Center at Kalijavedu Village, Chittoor District, till the next date of hearing.

Further, the respondents are also directed to consider the representations, dated 03.06.2021, submitted by the petitioners and other villagers, in the meanwhile.

//TRUE COPY//

Sd/-E.KameswaraRao ASSISTANT REGISTRAR

SECTION OFFICER

To,

    1. The Principal Secretary, Panchayat Raj and Rural Development Department, State of Andhra Pradesh, Block No.5, A.P.Secretariat, Velagapudi, Amaravati -522 238.
    1. The District Collector, Chitoor District, Old Collectorate Complex, Chittoor 517 001
    1. The District Panchayat Officer, Chitoor Revenue Old Collectorate Complex, Chittoor - 517 001
    1. The Secretary, Kalijavedu Gram Panchayat, Kalijavedu, Gangadhara Nellore Mandal, Chittoor District (1 to 4 By RPAD)
    1. One CC to SMT.S.PRANATHI Advocate [OPUC]
    1. One CC to Sri.V.Vinod K.Reddy, Standing Counsel (OPUC)
    1. Two CCs to GP for Panchayat Raj & Rural Development, High Court Of Andhra Pradesh. [OUT]
    1. One spare copy

SRL

$\mathcal{L}{\mathcal{A}}(x)$ $\left\langle \cdot \right\rangle$ $\mathcal{L}(\mathcal{L})$ $\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}}(x) = \frac{1}{\sqrt{2}} \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}} \right)^2 \left( \frac{1}{\sqrt{2}}$

$\frac{1}{2} \left( \frac{1}{2} \right)^2 \left( \frac{1}{2} \right)^2$ $\mathcal{L}^{\mathcal{A}}{\mathcal{A}}(x) = \mathcal{L}^{\mathcal{A}}{\mathcal{A}}(x)$

$\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\left(\mathcal{L}^{\mathcal{L}}{\mathcal{L}}\right)$ $\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}$ $\label{eq:1} \mathcal{L} = \mathcal{L} \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L} \right) \left( \mathcal{L$

$\label{eq:1} \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{max}} + \mathcal{L}{\text{$ $\mathcal{L}^{\mathcal{A}}{\mathcal{A}}(x) = \mathcal{L}^{\mathcal{A}}{\mathcal{A}}(x)$ $\sum_{\mathbf{q}} \frac{1}{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} \right)^{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} \right)^{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} \right)^{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} \right)^{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} \right)^{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} \right)^{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} \right)^{\mathbf{q}} \left( \frac{\mathbf{q}}{\mathbf{q}} $

$\label{eq:1} \begin{aligned} \mathbf{q} &= \mathbf{q} \ \mathbf{q} &= \mathbf{q} \ \mathbf{q} &= \mathbf{q} \end{aligned}$

$\label{eq:1} \mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \math$ $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A})$ $\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} \end{aligned}$

$\mathcal{L}^{\text{max}}{\text{max}}(x) = \mathcal{L}^{\text{max}}{\text{max}}(x) + \mathcal{L}^{\text{max}}{\text{max}}(x) + \mathcal{L}^{\text{max}}{\text{max}}(x) + \mathcal{L}^{\text{max}}{\text{max}}(x) + \mathcal{L}^{\text{max}}{\text{max}}(x) + \mathcal{L}^{\text{max}}_{\text{max}}(x)$

$\mathcal{L} = \mathcal{L} \times \mathcal{L}$ $\mathcal{L}$

$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$ $= \frac{d\mathbf{r}}{dt} \mathbf{r}$

$\begin{array}{c}\n\mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} \ \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} \ \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}} = \mathcal{L}{\text{max}}\n\end{array}$ $\label{eq:1} \begin{aligned} \mathcal{L}{\text{max}}(x) & = \mathcal{L}{\text{max}}(x) \mathcal{L}{\text{max}}(x) \ \mathcal{L}{\text{max}}(x) & = \mathcal{L}{\text{max}}(x) \mathcal{L}_{\text{max}}(x) \end{aligned}$

$\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2\left$

$\mathcal{L}^{\text{max}}{\text{max}}(x) = \mathcal{L}^{\text{max}}{\text{max}}(x)$

$\left\langle \mathcal{L}_{\text{max}}\right\rangle$

$\mathcal{L} = \frac{1}{\sqrt{2}} \left( \frac{1}{\sqrt{2}} \right)^2$ HIGH COURT

CMRJ

$\mathcal{L}^{\mathcal{A}}$

DATED:15/04/2021

NOTE: POST THE MATTER ON 19.04.2021

$F$ and $H$

146 APR 2021

$\sqrt{GH}$

ORDER

I.A.Nos.1 & 2 of 2021

$\overline{IN}$

WP.No.8042 of 2021

DIRECTION