K.Subrahmanyam vs. The State Of Andhra Pradesh
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
Admission (A P S E B)
Before:
Hon'ble M.Satyanarayana Murthy
Listed On:
26 Apr 2021
Original Order Copy
Get a certified copy of this order
Order Text
$126071$
IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI
FRIDAY, THE THIRTIETH DAY OF APRIL, TWO THOUSAND AND TWENTY ONE
:PRESENT:
THE HONOURABLE SRI JUSTICE M.SATYANARAYANA MURTHY
WRIT PETITION NO: 7793 OF 2021
Between:
7t.
-
- K.Subrahmanyam, S/o Subba Rayudu, aged about 46 years, R/o S.V. Nagar, Rajanif YSR Kadapa District.
- 2., K.Venkata Ramanamma, W/o Subbarahmanyam, aged about 42 years, R/o S.V Rajampet, YSR Kadapa District. Petitionerserra
AND
-
- The State of Andhra Pradesh, Energy Department, Secretariat Buildings, Secretariat, Velagapudi, Amaravati, Guntur District. Rep. by its Principal Secretary.
-
- The A.P. TRANSCO, Gunadala, Vijayawada, Krishna District. Rep. by its Chairman and Managing Director.
-
- The Chief Engineer, A.P. TRANSCO, Kadapa Zone, Kadapa.<br>4. The Superintending Engineer, A.P. TRANSCO, Kadapa Zone, Kadapa.
-
- The Deputy Executive Engineer, Construction Sub-Division-III, A.P. TRANSCO, Kadapa.
Respondents
Petition under Article 226 of the Constitution of India praying that in the circumstances stated in the affidavit filed therewith, the High Court may be pleased to issue a Writ, Order or Direction more particularly one in the nature of Writ of Mandamus declaring the action of the respondents in trying to lay the Transmission Lines through the 1<sup>st</sup> petitioner's lands situated in Sy.No.368 of Kuchivaripalli Village, Rajampet Mandal, Kadapa District is highly illegal, arbitrary and in violation of Articles 14 and 300-A of the Constitution of India and also contrary to the Andhra Pradesh Works of Licensees Rules, 2007 as enumerated in G.O.Ms.No.24, Energy (PR-II), Department, dated 27.2.2007 apart from violation of Principles of Natural Justice and consequently direct the respondents to lay the proposed transmission line through the 2nd petitioner's land situated in Sy.No.369 of Kuchivaripalli Village, Rajampet Mandal, Kadapa District.
IA NO: 1 OF 2021
Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to direct the respondents not to lay the transmission lines through the 1<sup>St</sup> petitioner's land situated in Sy.No.368 of Kuchivaripalli Village, Rajampet Mandal, Kadapa District except under due process of law pursuant to the notice dated 1.3.2021 on the file of the 5th respondent pending disposal of writ petition No. 7793 of 2021, on the file of the High Court.
The petition coming on for hearing, upon perusing the Petition and the affidavit filed in support thereof and upon hearing the arguments of Sri V.V.N. Narayana Rao, Advocate for the Petitioners, GP FOR ENERGY Advocate for the Respondents No. 1 to 4 and Sri Y.Nagireddy, Advocate for Respondent No. 5 and the Court made the following:
ORDER
"Post on 03.05.2021. In the meanwhile, both parties are directed to maintain Status-quo, as on today."
//TRUE COPY//
SD/- B.NARSING RAO REGISTRAR ASSISTANT
For ASSISTANT REGISTRAR
To,
-
- The Principal Secretary, Energy Department, Secretariat Buildings, State of Andhra<br>Pradesh, Secretariat, Velagapudi, Amaravati, Guntur District. (by RPAD)<br>2. The Chairman and Managing Director, A.P. TRANSCO, Gunadala, V
- Krishna District. (by RPAD)
- $3.$ The Chief Engineer, A.P. TRANSCO, Kadapa Zone, Kadapa. (by RPAD)
- The Superintending Engineer, A.P. TRANSCO, Kadapa Zone, Kadapa. (by RPAD)<br>The Deputy Executive Engineer, Construction Sub-Division-III, A.P. TRANSCO, 4.
-
- Kadapa. (by RPAD)<br>One CC to SRI. V.V.N. Narayana Rao, Advocate [OPUC]<br>Two CCs to GP FOR ENERGY ,High Court Of Andhra Pradesh. [OUT]<br>One CC to Sri Y.Nagi Reddy, Advocate [OPUC]
-
-
-
-
- One spare copy
MSR
$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3} \frac{d\mu}{\mu} \left( \frac{d\mu}{\mu} \right)^2 \frac{d\mu}{\mu} \left( \frac{d\mu}{\mu} \right)^2 \frac{d\mu}{\mu} \left( \frac{d\mu}{\mu} \right)^2 \frac{d\mu}{\mu} \left( \frac{d\mu}{\mu} \right)^2 \frac{d\mu}{\mu} \left( \frac{d\mu}{\mu} \right)^2 \frac{d\mu}{\mu} \left( \frac{d\mu}{\mu} \right)^2 \frac{d\mu}{\mu} \left( \frac{d\mu}{\mu} \right)^2$
$\frac{1}{\sqrt{2}}$ $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$ $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{$
$\label{eq:1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu_{\rm{eff}}^{2}$
$\frac{1}{2} \left( \frac{1}{2} \right)$
$\mathcal{L}^{\text{max}}_{\text{max}}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left($
$\frac{1}{\sqrt{2}}\int_{0}^{\sqrt{2}}\frac{1}{\sqrt{2}}\left( \frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( \frac{1}{2}\right) ^{2}+\frac{1}{2}\left( $
$\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2$
$\frac{1}{2}$ $\label{eq:2} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu_{\rm{eff}}$
$\frac{1}{2}$
$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu,d\mu,.$ $\label{eq:2.1} \frac{d\mathbf{x}}{dt} = \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{d\mathbf{x}}{dt} + \frac{$ $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{$ $\frac{1}{2}$
$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}$ $\label{eq:2} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{$
HIGH COURT
MSMJ
${Q_{\alpha\beta}}_{\alpha\beta}$
DATED:30/04/2021
NOTE: POST ON 03.05.2021
ORDER
WP.NO.7793 OF 2021
$\overline{\text{STATUS-QUO}}$
į.