V.Ramana Reddy vs. K.Ramana Reddy
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
For Extension Of Interim Orders
Before:
Hon'ble K Sreenivasa Reddy
Listed On:
13 Dec 2022
Original Order Copy
Get a certified copy of this order
Order Text
IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATION
THURSDAY, THE NINETEENTH DAY OF JANUARY TWO THOUSAND AND TWENTY THREE :PRESENT:
THE HONOURABLE SRI JUSTICE K SREENIVASA REDDY
IA No. 1 OF 2022 IN CRLRC NO: 388 OF 2019 <
$\cdots \cdots$
Between:
V.Ramana Reddy, S/o. Venkata Reddy, Aged about 50 years, Occ-Agriculturist, R/o. Vennavaripalli Village, Veligandla Mandal, Prakasam District.
...Petitioner
$\rightarrow$ AND the Parties
-
- K.Ramana Reddy, S/o, Gunda Reddy, Aged about 45 Yrs, Oc- Business, R/o. P.N. Varam Village, Veligandla Mandal, Prakasam District.
-
- The State Of Andhra Pradesh, Represented by its Public Prosecutor High Court of Judicature for the State of Andhra Pradesh at Amaravathi
$\cdots \cdots \cdots$
...Respondents
IA NO: 1 OF 2022/
Petition is filed under Section 482 Cr.P.C praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to extend the interim order dated 09:04.2019 passed in Criminal R.C. No. 388 of 2019 and pass such other order or orders Pending disposal of CRLRC No. 388 of 2019, on the file of the High Court.
CRLRC.NO.388 OF 2019
$f: {m}$
$\mathcal{F} \in \mathbb{R}^{n \times n}$
The first set
Revision is filed under Section 397 and 401 of Criminal Procedure Code. 1973 praying that in the circumstances stated in the memo of grounds filed in support of the Criminal Revision Case, the High Court may be pleased to file this Criminal Revision Case against the Order passed by the learned Judicial First Class Magistrate, Kanigiri, Prakasam District in Grl.M.P. No. 1387 of 2018 in CC No. 57 of 2016, dated 19.03.2019. $\gamma = \gamma_{\rm{max}}$
IA NO: 1 OF 2019
Petition is filed under Section 482 Cr.P.C praying that in the circumstances stated in the memo of grounds filed in support of the petition, the High Court may be pleased to stay of all further proceedings in CC No. 57 of 2016 on the file of the learned Judicial First Class Magistrate, Kanigiri, Prakasam district pending disposal of CRLRC 388 of 2019, on the file of the High Court.
$\mathcal{A}{\mathcal{A}}(\mathcal{B}{\mathcal{A}})$
$\mathcal{L}{\mathcal{L}}(\mathcal{L})$ $\mathcal{L}{\mathcal{A}} = \mathcal{L}{\mathcal{A}} \mathcal{L}{\mathcal{A}}$ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 $\mathcal{L} = \mathcal{L} \mathcal{L}$ Tuter sites
The petition coming on for hearing, upon perusing the Petition and the affidavit filed in support thereof and the order of the High Court order dated 09-04-2019, 23.04.2019, 21.09 $\cancel{2}$ 022 and 15.11.2022 made herein and upon hearing the arguments of Sri I.KOTI REDDY, Advocate for the Petitioner and of Sri Y.NAGI REDDY, Advocate for the Respondent No.1 and of Public Prosecutor for the Respondent No.2, the Court made the following
$\mathcal{L} = \mathcal{L}(\mathcal{L}(\mathcal{M}))$
$\mathcal{M} = \mathcal{M} \oplus \mathcal{M}$ $\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$
自己的人员是一个 $\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}$ $\mathcal{L} = \mathcal{L} \mathcal{L}$ CAR STARTS
ORDER:
"Post the matter after six (6) weeks
Interim order granted earlier is extended for a period of eight (8) weeks"
$\mathbb{E}[\mathbb{E}[\mathcal{L}]\mathcal{L}]\mathbb{E}[\mathcal{L}]\mathcal{L}$ //TRUE COPY//
工程序: 学生生 -
$\mathbb{E}\left{ \mathcal{L}^{(1)}\right} = \mathbb{E}\left{ \mathcal{L}^{(1)}\right} = \mathbb{E}\left{ \mathcal{L}^{(2)}\right} = \mathbb{E}\left{ \mathcal{L}^{(2)}\right} = \mathbb{E}\left{ \mathcal{L}^{(2)}\right} = \mathbb{E}\left{ \mathcal{L}^{(2)}\right} = \mathbb{E}\left{ \mathcal{L}^{(2)}\right} = \mathbb{E}\left{ \mathcal{L}^{(2)}\right} = \mathbb{E}\left{ \mathcal{L}^{(2)}\right} = \mathbb{$
月报新 第5日 $\mathcal{L} = \mathcal{L} \mathcal{L}$ $\mathbb{R}^n \cap \mathbb{R}^n \subset$ $\frac{1}{2} \sqrt{3} \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$
$Fc$
To,
-
- The Judicial First Class Magistrate, Kanigiri, Prakasam District.
-
- One CC to SRI. KOTI REDDY IDAMAKANTI Advocate [OPUC]
-
- One CC to SRI. Y NAGI REDDY Advocate [OPUC]
-
- Two CC's to Public Prosecutor, High Court of AP, Amaravati[OUT]
Martin
- One spare copy
ER
to 15 External and the $\mathcal{M}^{\mathcal{A}} = { \mathcal{A}^{\mathcal{A}} \mid \mathcal{A}^{\mathcal{A}} }$ Statistics $\mathbb{E} \left[ \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{E} \left( \mathbb{$ $\cdots \longrightarrow \cdots \longrightarrow \cdots$ $\mathcal{L}_{\mathcal{G}_1,\mathcal{G}_2,\mathcal{G}_3,\mathcal{G}_4,\mathcal{G}_5,\mathcal{G}_5,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}_6,\mathcal{G}6,\mathcal{G}6,\mathcal{G}6,\mathcal{$ $\mathbf{1} = \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$ $\mathcal{F}^{\alpha\beta\gamma\gamma} \mathcal{F}^{\beta\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{\gamma\gamma\gamma} \mathcal{F}^{$ TRANS OF $\mathcal{A} = \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$ $\mathbb{R} \supseteq \mathbb{R} \supseteq \mathbb{R}$ 《歷史情》 (1) $\ldots \ldots \ldots$ $\mathcal{Z} \in { \mathbb{R}^d \mid \mathcal{P} \text{all } \mathbb{R}^d \mid \mathbb{R}^d }$ 计传送器 计 $\mathcal{F}{\mathcal{A}} = \mathcal{F}{\mathcal{A}} = \mathcal{M}{\mathcal{A}} \otimes \mathcal{A} \otimes \mathcal{A}$ $\mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ Company Control 第四次第十四
$\lambda_{\mathcal{A}} = \lambda_{\mathcal{A}} \mathcal{A}{\mathcal{A}} \mathcal{A}{\mathcal{A}} \mathcal{A}{\mathcal{A}} \mathcal{A}{\mathcal{A}} \mathcal{A}{\mathcal{A}} \mathcal{A}{\mathcal{A}}$
$\tau \in \mathbb{R}^n \times \mathbb{R}^m$ $\sim 1.5$ $\leq A(\gamma)$ $\mathbb{Z} \times \mathbb{Z}$ SECTION OFFICER
Sd/- S. SRINIVASA PRASAD
$\mathcal{B}$
ASSISTANT REGISTRAR
23
HIGH COURT
SRK, J
DATED: 19/1/2023
POST THE MATTER AFTER SIX (6) WEEKS
$\mathcal{L}^{\mathcal{A}}\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left(\mathcal{F}^{\mathcal{A}}\right)\left($ $\mathcal{L} = {1, \ldots, n}$ $\mathcal{L}(\mathcal{M}0) = \mathcal{L}(\mathcal{M}0)$ $\mathcal{L} \left( \begin{smallmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$ in the contract 的感染。 $\mathbb{C}^{n+1} \times \mathbb{C}$ $\Delta t = \frac{1}{\sqrt{2}} \sum{i=1}^{n} \frac{1}{\sqrt{2}} \sum{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1$
$\mathcal{L} = \mathcal{L}$
$\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\mathcal{A}^{-1}$ $\mathcal{L} = \mathcal{L} \mathcal{L}$ $\mathcal{L} = \mathcal{L} \mathcal{L}$ $\mathcal{A}^{\mathcal{A}}\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left(\mathcal{A}^{\mathcal{A}}\right)\left($
Contract Services or side and of
$\mathbb{Z}_N \cong \mathbb{Z}$ $\sim 100,\mathrm{Kyr}$ $\mathcal{L}^{\text{max}}$ $\mathcal{L} = \mathcal{L} \mathcal{L}$
Silmin 1 $\mathcal{L} = \mathcal{L} \otimes \mathcal{L}$ $\mathcal{L} \left{ \begin{array}{c} \mathcal{L} \ \mathcal{L} \end{array} \right} = \mathcal{L} \left{ \begin{array}{c} \mathcal{L} \ \mathcal{L} \end{array} \right} = \mathcal{L} \left{ \begin{array}{c} \mathcal{L} \ \mathcal{L} \end{array} \right} = \mathcal{L} \left{ \begin{array}{c} \mathcal{L} \ \mathcal{L} \end{array} \right} = \mathcal{L} \left{ \begin{array}{c} \mathcal{L} \ \mathcal{L} \end{array} \right} = \mathcal{L} \left{ \begin{array}{c} \mathcal$ $\mathbb{R}^{\mathbb{Z}_{\geq 0}}$
$| \mathcal{Z}{\mathcal{B},\mathcal{A}} |{\mathcal{L}^{\infty}(\mathbb{R}^n)}$
$\mathcal{A}(\mathcal{A},\mathcal{A})$ $\mathcal{L} = \mathcal{L}$ $\mathbb{E} \left{ \begin{array}{c} \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E} \left[ \mathbb{E$
$\mathcal{L} = \mathcal{L} = \mathcal{L}$
INTERN
$\frac{1}{2}$
JAN 2023
7
ORDER
IA.NO.1 OF 2022 $\mathsf{IN}$ CRLRC.No.388 of 2019