Eswaramma vs. Lakshminarasamma

Court:High Court of Andhra Pradesh
Judge:Hon'ble K Suresh Reddy
Case Status:Unknown Status
Order Date:6 May 2022
CNR:APHC010108892021

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission

Before:

Hon'ble B S Bhanumathi

Listed On:

6 May 2022

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI

FRIDAY, THE SIXTH DAY OF MAY TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE MS JUSTICE B S BHANUMATH

IA No. 1 OF 2022 IN SA NO: 98 OF 2022

Between:

    1. Eswaramma, W/o Late Adandappa, Hindu, aged 59 years, R/o. Edulabalapuram Village, Somandepalli Mandalam, Now residing at lakshmipuram, Bangalore.
    1. Shoba, W/o Udayakumar, D/o late Anandappa, Hindu, aged 36 years, R/o. Edulabalapuram Village, Somandepalli Mandalam, Now residing at lakshmipuram, Bangalore.
    1. Sreedhar, S/o Late Anandappa, Hindu, aged 34 years, R/o.Edulabalapuram Village, Somandepalli Mandalam, Now residing at lakshmipuram, Bangalore.
    1. Ravindra Babu, S/o late Anandappa, Hindu, 32 years, R/o. Edulabalapuram Village, Somandepalli Mandalam, Now residing at lakshmipuram, Bangalore.

...Appellants

AND

    1. Lakshminarasamma, W/o Late Narayanappa, Hindu, aged 80 years, R/o. Edulabalapuram Village, Somandepalli Mandalam, Anantapuramu District.
    1. Obula Reddy, S/o Late Narayanappa, Hindu, aged 40 years, R/o. Edulabalapuram Village, Somandepalli Mandalam, Anantapuramu District.
    1. Kuruba Chinna Anjineyulu, S/o Ramaiah, Hindu, aged 40 years, R/o. Edulabalapuram Village, Somandepalli Mandalam, Anantapuramu District.
    1. Tulasamma, D/o Late Narayanappa, Hindu, aged 40 years, R/o. Edulabalapuram Village, Somandepalli Mandalam, Anantapuramu District.
    1. Girijamma, W/o Ramu, D/o Late Narayanappa, Hindu, aged 30 years, R/o. Eragampalli, Madhugiri Taluk, Thumkuru District, Karnataka State.

$...$ Respondent(s)

Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to stay the order dated 20.08.2020 in A.S.No.44 of 2018, in The Court of the II Additional District Judge, Hindupur, Pending disposal of SA No. 98 of 2022, on the file of the High Court.

The petition coming on for hearing upon perusing the Petition and the affidavit filed in support thereof and Order dated 10.03.2022 upon hearing the arguments of Sri G R SUDHAKAR Advocate for the Appellants and of SRI S KRISHNA REDDY, Advocate for Respondent Nos. 2,3 and 5, The Court made the following ORDER: ${ \tilde{q}_i }$

Sri S. Krishna Reddy, Advocate filed vakalat for R-2, R-3 and R-5. Proof of service of notices on respondent nos. 1 to 4 is filed and it is mentioned in the memo that acknowledgment of R-5 is awaited.

${i, i', j'}$

Post on 07.07.2022

Till then, interim order granted in I.A. No. 1 of 2022 is extended.

//TRUE COPY//

$-0.522$

$\mathbb{Z}^n$ 到他们的 1111 $\mathbb{R}^{\mathbb{N}}$

语 题

$Fc$

SECTION OFFICER

SD/- V.SAVITHRI GOWRI ASSISTANT REGISTRAR

To,

    1. The II Additional District Judge, Hindupur, Ananthapur District
    1. One CC to SRI. G R SUDHAKAR Advocate [OPUC] LASTIC
    1. One spare copy

MSB

HIGH COURT

Tatalian<br>生活化

$\mathcal{L}^{\text{max}}_{\text{max}}$ $\mathbb{C}^{\mathbb{C}^2}$

$\mathcal{L} = \mathcal{L} \mathcal{L} \mathcal{L}$ $\mathcal{L}_{\mathcal{S}}$ i Cikan

$\gamma_{\rm{eff}}\sim$ $\mathcal{L}^{\mathcal{L}}$ $\mathcal{H}^{\lambda}$

新版

$\mathcal{M}^{\text{max}}_{\text{max}}(\mathcal{M})$

$\mathbb{C}[\mathbb{R}^2,\mathbb{R}^2]$ $\frac{1}{2} \left( \frac{1}{2} \right)^{\frac{1}{2}}$

$\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1$ $\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

$\mathcal{P}_{\mathcal{A}}$ $\mathcal{L} = \mathcal{L}$ $\frac{1}{2} \left[ \frac{m^2}{\omega} \right]_0$ $\mathcal{L}^{\mathcal{L}}$ $\left(\begin{smallmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ 0$

$\mathcal{C}(\mathcal{A}){\mathcal{A}}$ $\mathcal{A} \in \mathbb{R}^{D}$ $\mathbb{C}[\lambda_1,\mathbb{C}^{\frac{1}{2}}]$ $\mathcal{L}{\mathcal{L}}$ $\hat{\mathbf{L}}_i$

$\mathcal{L}_{\mathcal{L}}$

$\mathcal{L}(\mathcal{L})$

$\delta_{\rm RSC}$

$\frac{1}{\sqrt{2}}\sum_{i=1}^{n}$ $\mathcal{L}_{\mathcal{M}}$ $\mathbb{R}^n$

$\mathcal{L}{\mathcal{L}}$ $\mathbb{C}^{\mathbb{C}}\times\mathbb{R}^{\mathbb{C}}$ $\mathcal{P}(\mathcal{M})$ $\hat{G}{\alpha,\beta\beta}$

$\sim_{\rm{crit}}$

$\mathcal{L}$

$\mathbb{F}_2^{(n-1)/2}$

BSBJ

DATED:06/05/2022

POST ON 07.07.2022

ORDER

$\mathcal{L}^{\prime}$

IA.NO.1 OF 2022 IN SA.No.98 of 2022

EXTENSION OF INTERIM DIRECTION

Share This Order

Case History of Orders

Order(7) - 7 Jul 2022

Interim Order

Click to view

Order(8) - 7 Jul 2022

Interim Order

Click to view

Order(5) - 6 May 2022

Interim Order

Click to view

Order(6) - 6 May 2022

Interim Order

Viewing

Order(4) - 19 Apr 2022

Interim Order

Click to view

Order(2) - 10 Mar 2022

Interim Order

Click to view

Order(3) - 10 Mar 2022

Interim Order

Click to view

Order(1) - 22 Feb 2022

Interim Order

Click to view