Union Of India vs. G.Venkat Babu
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
Admission
Before:
Hon'ble Joymalya Bagchi , M.Ganga Rao
Listed On:
20 Apr 2021
Original Order Copy
Get a certified copy of this order
Order Text
IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI (SPECIAL ORIGINAL JURISIDICTION) TUESDAY , THE TWENTIETH DAY OF APRIL TWO THOUSAND AND TWENTY ONE :PRESENT: THE HONOURABLE SRI JUSTICE JOYMALYA BAGCHI AND THE HONOURABLE SRI JUSTICE M.GANGA RAO
WRIT PETITION NO: 2812 OF 2021
Between:
-
- Union of India,, Rep. by its Chief Commissioner, Central Excise and Customs, Visakhapatnam Zone, Visakhapatnam.
-
- The Commissioner,, Customs and Central Excise, Kannavarithota, Guntur, Guntur District
AND
-
- G. Venkat Babu, S/o Yesobu; Aged about 38 years, Occ- Casual Labour (Temporary Status), 0/o The Commissioner, Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur, R/o Type-II, Central Excise Quarter, GT Road, Guntur.
-
- B.Muralidhar Rao, S/o Bapana Raj u, Aged about 53 years, Occ- Casual Labour<br>(Temporary Status), Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur, Rio Type-II, Central Excise Quarter, GT Road, Guntur.
Respondents
Petitioners
Petition under Article 226 of the Constitution of India praying that in the circumstances stated in the affidavit filed therewith, the High Court may be pleased to issue an order or direction more particularly in the nature of Writ of Certiorari, calling for the records pertaining to Oral Order dated 14/10/2020 in O.A. No. 020/01166/2014 of the Central Administrative Tribunal, Hyderabad Bench, Hyderabad and quash the same as illegal, arbitrary, contrary to law.
IA NO: 1 OF 2021
Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the writ petition, the High Court may be pleased to suspend the operation of the order dated 14.10.2020 in O.A. No. 020/01166/2014 passed by the Hon'ble Central Administrative Tribunal, Hyderabad Bench, Hyderabad pending disposal of WP 2812 of 2021, on the file of the High Court.
The petition coming on for hearing, upon perusing the Petition and the affidavit filed in support thereof and upon hearing the arguments of Sri N. Harinath, Asst Solicitor General for the Petitioners and of Sri J. Sudheer Advocate for the Respondents, the Court made the following.
ORDER:
(Proceedings taken up through Video Conferencing)
Mr. J. Sudheer, learned senior counsel appearing for the respondents submits 2<sup>nd</sup> respondent has retired in the meantime. His pensionary benefits have not been released due to pendency of this writ petition.
Having heard the parties, we direct that the admitted pensionary benefits of the 2<sup>nd</sup> respondent may be released.
Post on 25.06.2021.
IITRUE COPYII
For ASSISTANT REGISTRAR
أتنجع
Sd/- B. NARSING RAO ASSISTANT REGISTRAR
-
- G. Venkat Babu, S/o Yesobu, Occ- Casual Labour (Temporary Status), 0/o The Commissioner, Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur, R/o Type-II, Central Excise Quarter, GT Road, Guntur.
-
- B.Muralidhar Rao, S/o Bapana Raju, Occ- Casual Labour (Temporary Status),<br>Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur,<br>R/o Type-II, Central Excise Quarter, GT Road, Guntur. (1 & 2 by RPAD)<br>3.
-
- One spare copy
TVR
Ź
$\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$
$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^2\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^2\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2$ $\frac{1}{2} \left( \frac{1}{2} \right)$ $\label{eq:2.1} \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}}) = \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}})$ $\frac{1}{2}$
$\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{2}\sum_{i=1}^n\frac{1}{2}\left(\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\frac{1}{2}$ , $\frac{1}{2}$
$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu_{\rm{eff}},.$ $\label{eq:2} \begin{split} \mathcal{L}{\text{max}}(\mathbf{r}) = \mathcal{L}{\text{max}}(\mathbf{r}) \end{split}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$
$\frac{1}{2}$ $\label{eq:2.1} \frac{d\mathbf{r}}{d\mathbf{r}} = \frac{1}{\sqrt{2\pi}} \sum_{i=1}^n \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r$ $\sim$ $\sim$ $\label{eq:1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$
$\frac{1}{2}$ $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n$
$\frac{1}{2} \left( \frac{1}{2} \right)^2 \left( \frac{1}{2} \right)^2$
HIGH COURT
JBJ& MGRJ
DATED:20/04/2021
ORDER
$\frac{1}{\epsilon^2}$