Union Of India vs. G.Venkat Babu

Court:High Court of Andhra Pradesh
Judge:Hon'ble Ahsanuddin Amanullah
Case Status:Dismissed
Order Date:20 Apr 2021
CNR:APHC010041982021

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission

Before:

Hon'ble Joymalya Bagchi , M.Ganga Rao

Listed On:

20 Apr 2021

Original Order Copy

Get a certified copy of this order

Download True Copy

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI (SPECIAL ORIGINAL JURISIDICTION) TUESDAY , THE TWENTIETH DAY OF APRIL TWO THOUSAND AND TWENTY ONE :PRESENT: THE HONOURABLE SRI JUSTICE JOYMALYA BAGCHI AND THE HONOURABLE SRI JUSTICE M.GANGA RAO

WRIT PETITION NO: 2812 OF 2021

Between:

    1. Union of India,, Rep. by its Chief Commissioner, Central Excise and Customs, Visakhapatnam Zone, Visakhapatnam.
    1. The Commissioner,, Customs and Central Excise, Kannavarithota, Guntur, Guntur District

AND

    1. G. Venkat Babu, S/o Yesobu; Aged about 38 years, Occ- Casual Labour (Temporary Status), 0/o The Commissioner, Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur, R/o Type-II, Central Excise Quarter, GT Road, Guntur.
    1. B.Muralidhar Rao, S/o Bapana Raj u, Aged about 53 years, Occ- Casual Labour<br>(Temporary Status), Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur, Rio Type-II, Central Excise Quarter, GT Road, Guntur.

Respondents

Petitioners

Petition under Article 226 of the Constitution of India praying that in the circumstances stated in the affidavit filed therewith, the High Court may be pleased to issue an order or direction more particularly in the nature of Writ of Certiorari, calling for the records pertaining to Oral Order dated 14/10/2020 in O.A. No. 020/01166/2014 of the Central Administrative Tribunal, Hyderabad Bench, Hyderabad and quash the same as illegal, arbitrary, contrary to law.

IA NO: 1 OF 2021

Petition under Section 151 CPC praying that in the circumstances stated in the affidavit filed in support of the writ petition, the High Court may be pleased to suspend the operation of the order dated 14.10.2020 in O.A. No. 020/01166/2014 passed by the Hon'ble Central Administrative Tribunal, Hyderabad Bench, Hyderabad pending disposal of WP 2812 of 2021, on the file of the High Court.

The petition coming on for hearing, upon perusing the Petition and the affidavit filed in support thereof and upon hearing the arguments of Sri N. Harinath, Asst Solicitor General for the Petitioners and of Sri J. Sudheer Advocate for the Respondents, the Court made the following.

ORDER:

(Proceedings taken up through Video Conferencing)

Mr. J. Sudheer, learned senior counsel appearing for the respondents submits 2<sup>nd</sup> respondent has retired in the meantime. His pensionary benefits have not been released due to pendency of this writ petition.

Having heard the parties, we direct that the admitted pensionary benefits of the 2<sup>nd</sup> respondent may be released.

Post on 25.06.2021.

IITRUE COPYII

For ASSISTANT REGISTRAR

أتنجع

Sd/- B. NARSING RAO ASSISTANT REGISTRAR

    1. G. Venkat Babu, S/o Yesobu, Occ- Casual Labour (Temporary Status), 0/o The Commissioner, Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur, R/o Type-II, Central Excise Quarter, GT Road, Guntur.
    1. B.Muralidhar Rao, S/o Bapana Raju, Occ- Casual Labour (Temporary Status),<br>Customs, Central Excise and Service Tax, Guntur Commissionerate, Guntur,<br>R/o Type-II, Central Excise Quarter, GT Road, Guntur. (1 & 2 by RPAD)<br>3.
    1. One spare copy

TVR

Ź

$\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$

$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$ $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^2\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^2\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2$ $\frac{1}{2} \left( \frac{1}{2} \right)$ $\label{eq:2.1} \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}}) = \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}})$ $\frac{1}{2}$

$\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{2}\sum_{i=1}^n\frac{1}{2}\left(\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum_{i=1}^n\frac{1}{2}\sum$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\frac{1}{2}$ , $\frac{1}{2}$

$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu_{\rm{eff}},.$ $\label{eq:2} \begin{split} \mathcal{L}{\text{max}}(\mathbf{r}) = \mathcal{L}{\text{max}}(\mathbf{r}) \end{split}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$

$\frac{1}{2}$ $\label{eq:2.1} \frac{d\mathbf{r}}{d\mathbf{r}} = \frac{1}{\sqrt{2\pi}} \sum_{i=1}^n \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r}}{d\mathbf{r}} \frac{d\mathbf{r$ $\sim$ $\sim$ $\label{eq:1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

$\frac{1}{2}$ $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$

$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n$

$\frac{1}{2} \left( \frac{1}{2} \right)^2 \left( \frac{1}{2} \right)^2$

HIGH COURT

JBJ& MGRJ

DATED:20/04/2021

ORDER

$\frac{1}{\epsilon^2}$

WP.No.2812 of 2021

POST ON 25.06.2021

Share This Order

Case History of Orders

Order(14) - 11 Nov 2022

Final Order

Click to view

Order(15) - 11 Nov 2022

Final Order

Click to view

Order(13) - 2 Nov 2021

Final Order

Click to view

Order(12) - 6 Oct 2021

Interim Order

Click to view

Order(11) - 22 Sept 2021

Interim Order

Click to view

Order(10) - 15 Sept 2021

Interim Order

Click to view

Order(9) - 8 Sept 2021

Interim Order

Click to view

Order(8) - 1 Sept 2021

Interim Order

Click to view

Order(7) - 25 Aug 2021

Interim Order

Click to view

Order(6) - 11 Aug 2021

Interim Order

Click to view

Order(5) - 4 Aug 2021

Interim Order

Click to view

Order(4) - 2 Aug 2021

Interim Order

Click to view

Order(3) - 26 Jul 2021

Interim Order

Click to view

Order(2) - 19 Jul 2021

Interim Order

Click to view

Order(1) - 20 Apr 2021

Interim Order

Viewing