eCourtsIndia

Purushotham Subrahmanyam vs. Purushotham Tyagaraju

Court:High Court, Andhra Pradesh
Judge:Hon'ble Kiranmayee Mandava
Case Status:Unknown Status
Order Date:28 Jul 2022
CNR:APHC010024032021

AI Summary

Get an AI-powered analysis of this court order

Order Issued After Hearing

Purpose:

Admission

Before:

Hon'ble Battu Devanand

Listed On:

28 Jul 2022

Order Text

IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI THURSDAY, THE TWENTY EIGHTH DAY OF JULY TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRI JUSTICE BATTU DEVANAND CIVIL REVISION PETITION NO: 65 OF 2021

Between:

Purushotham Subrahmanyam, S/o. Late Sreeramulu, aged 79 years, Retd.Govt. Employee, R/o. Door No.18/110, Sathu Chengamma Street Kadapa City.

...Revision Petitioner Petitioner in I.A Plaintiff in O.S.

AND

    1. Purushotham Tyagaraju, S/o. Late Sreeramulu, Govt. Servant, Somasila Project, R/o. 20-588-1, Mulapet Nellore.
    1. Peketi Durga Prasad, S/o.Apala Swamy, R/o.614-E, Eluru Road Vijayawada City Krishna District

...Respondents herein/ Respondents in I.A./ Defendants in O.S.

Petition under Article 227 of the Constitution of India, praying that in the circumstances stated in the memorandum of grounds filed herein, the High Court may be pleased to allow the CRP by setting aside the Order dated 21.12.2020 passed in I.A.No.1805 of 2017 in O.S.No.352 of 2016, on the file of Additional Senior Civil Judge's Court, Kadapa.

IA NO: 1 OF 2021

Petition under Section 151 CPC is filed praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to stay all further proceedings in O.S.No.352 of 2016, on the Additional Senior Civil Judge's Court, Kadapa, pending disposal of CRP No.65 of 2021, on the file of the High Court.

The petition coming on for hearing, upon perusing the Petition and the affidavit filed in support thereof and the orders of the High Court dated 25.01.2021, 08.02.2021, 20.04.2022 & 30.06.2022 made herein and upon hearing the arguments of Sri G Ramesh Babu Advocate for the Petitioner and Sri Srinivas Emani, Advocate for the Respondent No.2 and the court made the following

ORDER:

Interim stay, granted earlier, is extended for a further period of eight (8) weeks.

Post the matter on 08.09.2022.

SD/-G.HELA NAIDU ASSISTANT REGISTRAR

I/TRUE COPYI/

FOR ASSISTANT REGISTRAR

To,

  1. The Additional Senior Civil Judge's Court, Kadapa<br>2. One CC to Sri. G.Ramesh Babu, Advocate [OPUC]<br>3. One CC to Sri. Srinivas Emani, Advocate [OPUC]

  2. One spare copy.

RVK

$\ddot{\mathbf{y}}$

$\mathbf{y}$

$\mathbf{y}$

$\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2}$

$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n$

$\Delta \phi$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{$ $\label{eq:2} \begin{split} \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}}) = \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}}) \end{split}$

$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}$

$\frac{1}{2} \frac{1}{2} \frac{d^2 \theta}{d\theta^2} , .$

$\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left($ $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$

$\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$

HIGH COURT

$\frac{1}{2}$ DEVJ

DATED:28/07/2022

NOTE: POST ON 08.09.2022.

ORDER

$\mathbb{R}^3$

CRP.No.65 of 2021

$\mathbf{y}_t$

EXTENSION OF EARLIER INTERIM ORDER

Original Order Copy

Get a certified copy of this order

Share This Order

Case History of Orders

Order(13) - 24 Jun 2024

Final Order

Click to view

Order(14) - 24 Jun 2024

Final Order

Click to view

Order(12) - 20 Jun 2024

Interim Order

Click to view

Order(11) - 24 Apr 2024

Interim Order

Click to view

Order(10) - 4 May 2023

Interim Order

Click to view

Order(8) - 28 Jul 2022

Interim Order

Click to view

Order(9) - 28 Jul 2022

Interim Order

Viewing

Order(6) - 30 Jun 2022

Interim Order

Click to view

Order(7) - 30 Jun 2022

Interim Order

Click to view

Order(4) - 20 Apr 2022

Interim Order

Click to view

Order(5) - 20 Apr 2022

Interim Order

Click to view

Order(3) - 13 Apr 2022

Interim Order

Click to view

Order(2) - 8 Feb 2021

Interim Order

Click to view

Order(1) - 25 Jan 2021

Interim Order

Click to view