Purushotham Subrahmanyam vs. Purushotham Tyagaraju
AI Summary
Get an AI-powered analysis of this court order
Order Issued After Hearing
Purpose:
Admission
Before:
Hon'ble Battu Devanand
Listed On:
28 Jul 2022
Order Text
IN THE HIGH COURT OF ANDHRA PRADESH AT AMARAVATI THURSDAY, THE TWENTY EIGHTH DAY OF JULY TWO THOUSAND AND TWENTY TWO :PRESENT: THE HONOURABLE SRI JUSTICE BATTU DEVANAND CIVIL REVISION PETITION NO: 65 OF 2021
Between:
Purushotham Subrahmanyam, S/o. Late Sreeramulu, aged 79 years, Retd.Govt. Employee, R/o. Door No.18/110, Sathu Chengamma Street Kadapa City.
...Revision Petitioner Petitioner in I.A Plaintiff in O.S.
AND
-
- Purushotham Tyagaraju, S/o. Late Sreeramulu, Govt. Servant, Somasila Project, R/o. 20-588-1, Mulapet Nellore.
-
- Peketi Durga Prasad, S/o.Apala Swamy, R/o.614-E, Eluru Road Vijayawada City Krishna District
...Respondents herein/ Respondents in I.A./ Defendants in O.S.
Petition under Article 227 of the Constitution of India, praying that in the circumstances stated in the memorandum of grounds filed herein, the High Court may be pleased to allow the CRP by setting aside the Order dated 21.12.2020 passed in I.A.No.1805 of 2017 in O.S.No.352 of 2016, on the file of Additional Senior Civil Judge's Court, Kadapa.
IA NO: 1 OF 2021
Petition under Section 151 CPC is filed praying that in the circumstances stated in the affidavit filed in support of the petition, the High Court may be pleased to stay all further proceedings in O.S.No.352 of 2016, on the Additional Senior Civil Judge's Court, Kadapa, pending disposal of CRP No.65 of 2021, on the file of the High Court.
The petition coming on for hearing, upon perusing the Petition and the affidavit filed in support thereof and the orders of the High Court dated 25.01.2021, 08.02.2021, 20.04.2022 & 30.06.2022 made herein and upon hearing the arguments of Sri G Ramesh Babu Advocate for the Petitioner and Sri Srinivas Emani, Advocate for the Respondent No.2 and the court made the following
ORDER:
Interim stay, granted earlier, is extended for a further period of eight (8) weeks.
Post the matter on 08.09.2022.
SD/-G.HELA NAIDU ASSISTANT REGISTRAR
I/TRUE COPYI/
FOR ASSISTANT REGISTRAR
To,
-
The Additional Senior Civil Judge's Court, Kadapa<br>2. One CC to Sri. G.Ramesh Babu, Advocate [OPUC]<br>3. One CC to Sri. Srinivas Emani, Advocate [OPUC]
-
One spare copy.
RVK
$\ddot{\mathbf{y}}$
$\mathbf{y}$
$\mathbf{y}$
$\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2}$
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n$
$\Delta \phi$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{$ $\label{eq:2} \begin{split} \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}}) = \mathcal{L}{\text{max}}(\mathcal{L}{\text{max}}) \end{split}$
$\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\mu\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2}}$
$\frac{1}{2} \frac{1}{2} \frac{d^2 \theta}{d\theta^2} , .$
$\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left($ $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac$
$\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$
HIGH COURT
$\frac{1}{2}$ DEVJ
DATED:28/07/2022
NOTE: POST ON 08.09.2022.
ORDER
$\mathbb{R}^3$
CRP.No.65 of 2021
$\mathbf{y}_t$
EXTENSION OF EARLIER INTERIM ORDER

Original Order Copy
Get a certified copy of this order